Normalized defining polynomial
\( x^{21} - 84 x^{19} + 3024 x^{17} - 60928 x^{15} - 537 x^{14} + 752640 x^{13} + 30072 x^{12} - 5870592 x^{11} - 661584 x^{10} + 28700672 x^{9} + 7217280 x^{8} - 84208818 x^{7} - 40416768 x^{6} + 132440952 x^{5} + 107778048 x^{4} - 70458304 x^{3} - 107778048 x^{2} - 38914176 x - 3818312 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(103488563958552367070086264761337535636115456=2^{12}\cdot 3^{28}\cdot 7^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $124.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{21} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{10}{21}$, $\frac{1}{21} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{10}{21} a$, $\frac{1}{21} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{10}{21} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{21} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{10}{21} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{63} a^{11} - \frac{1}{63} a^{10} + \frac{1}{63} a^{9} + \frac{1}{63} a^{8} - \frac{1}{63} a^{7} + \frac{4}{9} a^{6} + \frac{1}{9} a^{5} - \frac{25}{63} a^{4} + \frac{25}{63} a^{3} + \frac{17}{63} a^{2} + \frac{31}{63} a - \frac{10}{63}$, $\frac{1}{441} a^{12} + \frac{1}{441} a^{11} - \frac{1}{441} a^{10} - \frac{1}{147} a^{9} - \frac{8}{441} a^{8} + \frac{5}{441} a^{7} + \frac{3}{7} a^{6} + \frac{31}{441} a^{5} - \frac{151}{441} a^{4} - \frac{17}{441} a^{3} - \frac{58}{441} a^{2} + \frac{151}{441} a + \frac{43}{441}$, $\frac{1}{441} a^{13} - \frac{2}{441} a^{11} - \frac{2}{441} a^{10} - \frac{5}{441} a^{9} - \frac{8}{441} a^{8} - \frac{5}{441} a^{7} - \frac{11}{441} a^{6} - \frac{26}{63} a^{5} - \frac{160}{441} a^{4} - \frac{41}{441} a^{3} - \frac{85}{441} a^{2} + \frac{41}{147} a - \frac{169}{441}$, $\frac{1}{882} a^{14} + \frac{1}{63} a^{10} - \frac{1}{63} a^{9} - \frac{1}{882} a^{7} + \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{25}{63} a^{3} + \frac{11}{63} a^{2} - \frac{4}{9} a + \frac{43}{441}$, $\frac{1}{882} a^{15} - \frac{1}{63} a^{9} - \frac{5}{294} a^{8} + \frac{4}{9} a^{6} - \frac{1}{3} a^{5} + \frac{4}{9} a^{3} + \frac{2}{7} a^{2} + \frac{40}{147} a - \frac{2}{9}$, $\frac{1}{882} a^{16} - \frac{1}{63} a^{10} - \frac{5}{294} a^{9} + \frac{1}{63} a^{7} - \frac{1}{3} a^{6} + \frac{4}{9} a^{4} + \frac{2}{7} a^{3} + \frac{40}{147} a^{2} - \frac{2}{9} a - \frac{2}{7}$, $\frac{1}{6174} a^{17} + \frac{1}{3087} a^{16} - \frac{1}{6174} a^{15} - \frac{1}{6174} a^{14} - \frac{1}{441} a^{11} - \frac{11}{686} a^{10} - \frac{64}{3087} a^{9} - \frac{13}{6174} a^{8} + \frac{71}{6174} a^{7} - \frac{1}{3} a^{6} + \frac{11}{63} a^{5} + \frac{67}{441} a^{4} + \frac{32}{343} a^{3} + \frac{44}{3087} a^{2} - \frac{299}{1029} a + \frac{1042}{3087}$, $\frac{1}{12854268} a^{18} + \frac{1}{6427134} a^{17} - \frac{353}{1071189} a^{16} + \frac{3055}{6427134} a^{15} + \frac{101}{306054} a^{14} + \frac{136}{459081} a^{13} - \frac{23}{51009} a^{12} - \frac{3109}{12854268} a^{11} + \frac{43315}{6427134} a^{10} - \frac{8335}{3213567} a^{9} + \frac{137519}{6427134} a^{8} - \frac{3203}{918162} a^{7} + \frac{9592}{459081} a^{6} + \frac{194770}{459081} a^{5} - \frac{330697}{714126} a^{4} - \frac{5118}{119021} a^{3} - \frac{313394}{3213567} a^{2} + \frac{857216}{3213567} a - \frac{153826}{459081}$, $\frac{1}{12854268} a^{19} - \frac{19}{3213567} a^{17} - \frac{3119}{6427134} a^{16} + \frac{608}{3213567} a^{15} + \frac{2867}{6427134} a^{14} - \frac{479}{459081} a^{13} + \frac{8483}{12854268} a^{12} + \frac{1234}{459081} a^{11} - \frac{1682}{3213567} a^{10} - \frac{9007}{714126} a^{9} - \frac{21296}{1071189} a^{8} + \frac{38543}{2142378} a^{7} - \frac{130468}{459081} a^{6} - \frac{2614807}{6427134} a^{5} + \frac{11615}{153027} a^{4} - \frac{1120703}{3213567} a^{3} + \frac{78268}{1071189} a^{2} + \frac{959509}{3213567} a - \frac{668587}{3213567}$, $\frac{1}{12854268} a^{20} + \frac{40}{3213567} a^{17} - \frac{479}{6427134} a^{16} - \frac{10}{51009} a^{15} - \frac{830}{3213567} a^{14} + \frac{2137}{4284756} a^{13} + \frac{76}{459081} a^{12} + \frac{577}{153027} a^{11} - \frac{35698}{3213567} a^{10} - \frac{96569}{6427134} a^{9} + \frac{6535}{459081} a^{8} + \frac{61681}{3213567} a^{7} - \frac{2945921}{6427134} a^{6} + \frac{132199}{459081} a^{5} + \frac{124543}{459081} a^{4} + \frac{525722}{1071189} a^{3} - \frac{1479418}{3213567} a^{2} - \frac{212174}{459081} a - \frac{1535815}{3213567}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9409649138830000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7^2:C_3:C_3$ (as 21T21):
| A solvable group of order 441 |
| The 25 conjugacy class representatives for $C_7^2:C_3:C_3$ |
| Character table for $C_7^2:C_3:C_3$ is not computed |
Intermediate fields
| 3.3.3969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||