Normalized defining polynomial
\( x^{21} - 4 x^{20} - 62 x^{19} + 189 x^{18} + 1681 x^{17} - 3408 x^{16} - 25763 x^{15} + 27349 x^{14} + 238657 x^{13} - 54441 x^{12} - 1321059 x^{11} - 619089 x^{10} + 3989997 x^{9} + 4432703 x^{8} - 4738321 x^{7} - 10274281 x^{6} - 2570366 x^{5} + 6167033 x^{4} + 5960453 x^{3} + 2161528 x^{2} + 310542 x + 8117 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10180793702309956451402616388520823146632889469649989663981568=2^{18}\cdot 37^{7}\cdot 109^{2}\cdot 18169^{2}\cdot 40897^{2}\cdot 249727200731^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $803.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 109, 18169, 40897, 249727200731$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{3} + \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{3}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{12} + \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{16} a^{11} - \frac{3}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{3}{16} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a - \frac{5}{16}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{15} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} + \frac{1}{16} a^{10} - \frac{3}{16} a^{9} - \frac{1}{4} a^{8} - \frac{1}{16} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{7}{16} a - \frac{1}{8}$, $\frac{1}{11913285904} a^{19} - \frac{13139329}{5956642952} a^{18} + \frac{209959155}{11913285904} a^{17} - \frac{136965165}{11913285904} a^{16} - \frac{319085227}{5956642952} a^{15} + \frac{184097149}{11913285904} a^{14} - \frac{1032770419}{11913285904} a^{13} - \frac{63295363}{5956642952} a^{12} - \frac{330659505}{5956642952} a^{11} - \frac{1163602093}{11913285904} a^{10} + \frac{908927741}{11913285904} a^{9} - \frac{114228420}{744580369} a^{8} - \frac{1333472609}{5956642952} a^{7} - \frac{757100849}{11913285904} a^{6} + \frac{987145503}{11913285904} a^{5} - \frac{1865082267}{5956642952} a^{4} + \frac{501387777}{11913285904} a^{3} + \frac{5577983795}{11913285904} a^{2} - \frac{739778125}{2978321476} a + \frac{4603083609}{11913285904}$, $\frac{1}{17740797628805637152} a^{20} - \frac{13139331}{17740797628805637152} a^{19} + \frac{172641966570175}{17740797628805637152} a^{18} + \frac{25655511865384847}{2217599703600704644} a^{17} + \frac{499142558616034873}{17740797628805637152} a^{16} + \frac{811746785896255685}{17740797628805637152} a^{15} + \frac{495071361173808117}{8870398814402818576} a^{14} - \frac{885256682292537821}{17740797628805637152} a^{13} - \frac{29603071720856265}{341169185169339176} a^{12} - \frac{1681890068812125585}{17740797628805637152} a^{11} - \frac{201934012979673937}{4435199407201409288} a^{10} + \frac{4139171881323965819}{17740797628805637152} a^{9} - \frac{111077479532155165}{2217599703600704644} a^{8} - \frac{4286559498591072193}{17740797628805637152} a^{7} - \frac{805559207850215225}{8870398814402818576} a^{6} - \frac{2139788223557287103}{17740797628805637152} a^{5} - \frac{8271693700808577309}{17740797628805637152} a^{4} - \frac{549019691781756703}{1108799851800352322} a^{3} - \frac{4628272794702382179}{17740797628805637152} a^{2} - \frac{2071556584452927575}{17740797628805637152} a + \frac{683340417902412975}{17740797628805637152}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3514444739130000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 96018048000 |
| The 255 conjugacy class representatives for t21n156 are not computed |
| Character table for t21n156 is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.12.34 | $x^{12} + 2 x^{11} + 2 x^{9} + 2 x^{7} + 2 x^{5} + 2 x^{3} + 2 x + 2$ | $12$ | $1$ | $12$ | 12T254 | $[10/9, 10/9, 10/9, 10/9, 10/9, 10/9]_{9}^{6}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.14.7.1 | $x^{14} - 405224 x^{8} + 41051622544 x^{2} - 2373296928325$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 109.3.2.2 | $x^{3} + 654$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.14.0.1 | $x^{14} - x + 96$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | |
| 18169 | Data not computed | ||||||
| 40897 | Data not computed | ||||||
| 249727200731 | Data not computed | ||||||