Normalized defining polynomial
\( x^{21} - 96 x^{19} - 64 x^{18} + 3708 x^{17} + 4944 x^{16} - 72008 x^{15} - 147312 x^{14} + 698832 x^{13} + 2103616 x^{12} - 2446848 x^{11} - 14296320 x^{10} - 7753344 x^{9} + 36094464 x^{8} + 66183552 x^{7} + 16767744 x^{6} - 75575808 x^{5} - 115024896 x^{4} - 82130944 x^{3} - 33288192 x^{2} - 7397376 x - 704512 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-994744179088530338219805704638291841630208=-\,2^{14}\cdot 3^{24}\cdot 43^{2}\cdot 197\cdot 8388019^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 43, 197, 8388019$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{512} a^{15} - \frac{1}{128} a^{13} - \frac{1}{128} a^{11} + \frac{1}{64} a^{9} - \frac{1}{32} a^{8} - \frac{1}{32} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{2048} a^{16} - \frac{1}{1024} a^{15} - \frac{1}{512} a^{14} + \frac{1}{256} a^{13} - \frac{1}{512} a^{12} + \frac{3}{256} a^{11} - \frac{3}{256} a^{10} - \frac{1}{32} a^{9} - \frac{3}{128} a^{8} + \frac{1}{64} a^{7} - \frac{1}{32} a^{6} + \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{16} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8192} a^{17} - \frac{1}{1024} a^{15} - \frac{5}{2048} a^{13} - \frac{3}{512} a^{12} + \frac{11}{1024} a^{11} + \frac{1}{512} a^{10} + \frac{5}{512} a^{9} - \frac{1}{128} a^{8} - \frac{1}{16} a^{7} + \frac{1}{64} a^{5} - \frac{1}{16} a^{4} - \frac{5}{64} a^{3} - \frac{5}{32} a^{2} + \frac{5}{16} a + \frac{1}{8}$, $\frac{1}{32768} a^{18} - \frac{1}{16384} a^{17} - \frac{1}{4096} a^{16} + \frac{1}{2048} a^{15} - \frac{5}{8192} a^{14} - \frac{17}{4096} a^{13} - \frac{9}{4096} a^{12} - \frac{13}{1024} a^{11} - \frac{29}{2048} a^{10} + \frac{25}{1024} a^{9} + \frac{5}{256} a^{8} - \frac{1}{16} a^{7} - \frac{15}{256} a^{6} - \frac{11}{128} a^{5} + \frac{3}{256} a^{4} - \frac{1}{8} a^{3} - \frac{3}{32} a^{2} + \frac{1}{8} a + \frac{7}{16}$, $\frac{1}{131072} a^{19} + \frac{1}{32768} a^{17} - \frac{29}{32768} a^{15} + \frac{21}{8192} a^{14} - \frac{83}{16384} a^{13} - \frac{19}{8192} a^{12} + \frac{71}{8192} a^{11} + \frac{1}{1024} a^{10} - \frac{9}{2048} a^{9} - \frac{7}{512} a^{8} + \frac{49}{1024} a^{7} - \frac{13}{256} a^{6} - \frac{25}{1024} a^{5} - \frac{45}{512} a^{4} + \frac{11}{128} a^{3} - \frac{11}{64} a^{2} - \frac{1}{64} a + \frac{11}{32}$, $\frac{1}{524288} a^{20} - \frac{1}{262144} a^{19} + \frac{1}{131072} a^{18} - \frac{1}{65536} a^{17} - \frac{29}{131072} a^{16} - \frac{57}{65536} a^{15} - \frac{167}{65536} a^{14} - \frac{3}{512} a^{13} + \frac{109}{32768} a^{12} + \frac{189}{16384} a^{11} + \frac{115}{8192} a^{10} + \frac{123}{4096} a^{9} + \frac{77}{4096} a^{8} + \frac{53}{2048} a^{7} + \frac{79}{4096} a^{6} + \frac{59}{512} a^{5} - \frac{61}{1024} a^{4} - \frac{11}{128} a^{3} + \frac{21}{256} a^{2} + \frac{3}{32} a - \frac{11}{64}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 145059252236000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.7.25164057.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.9.0.1}{9} }$ | $21$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.32 | $x^{14} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} - 2 x^{7} + 4 x^{6} - 2 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 43 | Data not computed | ||||||
| 197 | Data not computed | ||||||
| 8388019 | Data not computed | ||||||