Normalized defining polynomial
\( x^{21} - 90 x^{19} - 48 x^{18} + 3114 x^{17} + 2736 x^{16} - 55436 x^{15} - 59544 x^{14} + 556140 x^{13} + 626528 x^{12} - 3161016 x^{11} - 3364128 x^{10} + 9540856 x^{9} + 9086400 x^{8} - 12948624 x^{7} - 11248992 x^{6} + 4643712 x^{5} + 5262720 x^{4} + 208896 x^{3} - 734976 x^{2} - 200448 x - 14848 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-476572123064963750340948413604798767327870976=-\,2^{38}\cdot 3^{21}\cdot 19\cdot 29^{2}\cdot 37\cdot 809^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19, 29, 37, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{5}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{7}$, $\frac{1}{16} a^{12} - \frac{1}{4} a^{4}$, $\frac{1}{32} a^{13} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{32} a^{14} - \frac{1}{8} a^{6}$, $\frac{1}{64} a^{15} + \frac{1}{16} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{128} a^{16} - \frac{1}{64} a^{14} - \frac{1}{32} a^{12} + \frac{1}{32} a^{8} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{128} a^{17} + \frac{1}{32} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{128} a^{18} - \frac{1}{32} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{6784} a^{19} + \frac{1}{424} a^{18} - \frac{1}{1696} a^{17} - \frac{23}{6784} a^{16} + \frac{17}{3392} a^{15} - \frac{9}{3392} a^{14} - \frac{3}{848} a^{13} - \frac{13}{1696} a^{12} + \frac{33}{1696} a^{11} + \frac{13}{424} a^{10} - \frac{1}{53} a^{9} + \frac{1}{1696} a^{8} - \frac{27}{848} a^{7} - \frac{83}{848} a^{6} - \frac{11}{106} a^{5} + \frac{10}{53} a^{4} - \frac{35}{106} a^{3} - \frac{11}{106} a^{2} + \frac{14}{53} a - \frac{25}{53}$, $\frac{1}{235157878536796749981867702736962198502144} a^{20} + \frac{1932056089954702139005787994984243397}{58789469634199187495466925684240549625536} a^{19} - \frac{281912316564390028121319533151009245959}{117578939268398374990933851368481099251072} a^{18} - \frac{330963127267662614388987484296259626}{918585463034362304616670713816258587899} a^{17} + \frac{303776245323398420237213359231083786263}{117578939268398374990933851368481099251072} a^{16} + \frac{237013281024905490200417988838299374899}{58789469634199187495466925684240549625536} a^{15} + \frac{154034402680962633124509272530627081173}{58789469634199187495466925684240549625536} a^{14} + \frac{59025176449743698734398192018098749459}{14697367408549796873866731421060137406384} a^{13} + \frac{389138149777643877560893301479745124895}{58789469634199187495466925684240549625536} a^{12} - \frac{8626549275209486225981924921673906069}{277308819029241450450315687189813913328} a^{11} + \frac{308283212774197621817107914829665847225}{29394734817099593747733462842120274812768} a^{10} + \frac{35245790191885478590065498257642720579}{3674341852137449218466682855265034351596} a^{9} + \frac{1215013174899830690942295337415200121585}{29394734817099593747733462842120274812768} a^{8} - \frac{510657953585082657074790702765780300831}{14697367408549796873866731421060137406384} a^{7} - \frac{730335482656435239175388142516416425719}{14697367408549796873866731421060137406384} a^{6} - \frac{773867539337648855836015765702017502089}{3674341852137449218466682855265034351596} a^{5} + \frac{171919078331639525638510217647096870760}{918585463034362304616670713816258587899} a^{4} - \frac{121765359719093584901098817972074808751}{918585463034362304616670713816258587899} a^{3} - \frac{430323005897657549169879658919458481232}{918585463034362304616670713816258587899} a^{2} - \frac{332893174410875384147806519654670892153}{918585463034362304616670713816258587899} a - \frac{264274845670864759267562838994188736379}{918585463034362304616670713816258587899}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36491153706000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for t21n147 are not computed |
| Character table for t21n147 is not computed |
Intermediate fields
| 7.7.670188544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | $21$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.26.125 | $x^{12} + 4 x^{7} + 4 x^{6} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | 12T66 | $[4/3, 4/3, 8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 809 | Data not computed | ||||||