Normalized defining polynomial
\( x^{21} - 66 x^{19} - 44 x^{18} + 1755 x^{17} + 2340 x^{16} - 23304 x^{15} - 48168 x^{14} + 149733 x^{13} + 477784 x^{12} - 261576 x^{11} - 2272800 x^{10} - 1756043 x^{9} + 3891348 x^{8} + 8255907 x^{7} + 3442422 x^{6} - 6481188 x^{5} - 11018952 x^{4} - 8015728 x^{3} - 3259872 x^{2} - 724416 x - 68992 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-376684621470118839904470766759029380731469611008=-\,2^{14}\cdot 3^{45}\cdot 7^{4}\cdot 11^{2}\cdot 547^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $184.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{3}{8} a^{11} - \frac{1}{2} a^{9} - \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{3} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{13}{32} a^{14} + \frac{1}{8} a^{13} - \frac{21}{64} a^{12} + \frac{13}{32} a^{11} + \frac{5}{16} a^{10} - \frac{1}{2} a^{9} - \frac{11}{64} a^{8} + \frac{1}{32} a^{7} - \frac{3}{16} a^{6} + \frac{1}{8} a^{5} - \frac{11}{64} a^{4} - \frac{1}{32} a^{3} + \frac{23}{64} a^{2} + \frac{1}{16} a + \frac{7}{16}$, $\frac{1}{512} a^{17} + \frac{11}{256} a^{15} + \frac{37}{128} a^{14} - \frac{101}{512} a^{13} + \frac{33}{128} a^{12} - \frac{5}{16} a^{11} - \frac{25}{64} a^{10} + \frac{245}{512} a^{9} + \frac{11}{64} a^{8} + \frac{7}{32} a^{7} + \frac{3}{16} a^{6} - \frac{27}{512} a^{5} + \frac{5}{128} a^{4} - \frac{165}{512} a^{3} - \frac{53}{256} a^{2} - \frac{59}{128} a + \frac{25}{64}$, $\frac{1}{28672} a^{18} + \frac{1}{2048} a^{17} + \frac{107}{14336} a^{16} - \frac{23}{3584} a^{15} + \frac{14131}{28672} a^{14} + \frac{3711}{14336} a^{13} - \frac{421}{3584} a^{12} + \frac{895}{3584} a^{11} - \frac{9979}{28672} a^{10} + \frac{4063}{14336} a^{9} - \frac{3}{16} a^{8} - \frac{19}{56} a^{7} + \frac{5157}{28672} a^{6} + \frac{3405}{14336} a^{5} + \frac{10803}{28672} a^{4} - \frac{495}{1792} a^{3} - \frac{217}{512} a^{2} - \frac{15}{128} a + \frac{73}{256}$, $\frac{1}{229376} a^{19} - \frac{1}{57344} a^{18} - \frac{19}{114688} a^{17} - \frac{113}{57344} a^{16} - \frac{4061}{229376} a^{15} - \frac{12051}{28672} a^{14} - \frac{12737}{57344} a^{13} + \frac{2649}{28672} a^{12} + \frac{1667}{32768} a^{11} - \frac{28327}{57344} a^{10} + \frac{26601}{57344} a^{9} - \frac{187}{448} a^{8} + \frac{101413}{229376} a^{7} + \frac{3}{16} a^{6} + \frac{60255}{229376} a^{5} - \frac{34883}{114688} a^{4} - \frac{2515}{28672} a^{3} - \frac{925}{2048} a^{2} + \frac{997}{2048} a - \frac{465}{1024}$, $\frac{1}{5505024} a^{20} + \frac{1}{2752512} a^{19} - \frac{31}{2752512} a^{18} + \frac{121}{229376} a^{17} - \frac{11815}{1835008} a^{16} - \frac{16545}{917504} a^{15} + \frac{120777}{458752} a^{14} - \frac{18247}{114688} a^{13} + \frac{786967}{1835008} a^{12} - \frac{1025167}{2752512} a^{11} + \frac{623615}{1376256} a^{10} - \frac{309829}{688128} a^{9} + \frac{893623}{1835008} a^{8} - \frac{292827}{917504} a^{7} + \frac{794229}{1835008} a^{6} + \frac{169167}{458752} a^{5} - \frac{99877}{458752} a^{4} - \frac{9923}{28672} a^{3} + \frac{12791}{49152} a^{2} - \frac{881}{12288} a + \frac{461}{12288}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 151124625332000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.7.1963110249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | R | R | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.16 | $x^{14} - 2 x^{13} - 3 x^{12} - 2 x^{10} + 4 x^{9} + 2 x^{8} - 2 x^{7} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 4 x^{3} + 4 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.8.0.1 | $x^{8} - x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 547 | Data not computed | ||||||