Normalized defining polynomial
\( x^{21} - 111 x^{19} - 74 x^{18} + 4833 x^{17} + 6444 x^{16} - 102315 x^{15} - 208926 x^{14} + 1011159 x^{13} + 3036896 x^{12} - 2555901 x^{11} - 17382342 x^{10} - 20116901 x^{9} + 1938204 x^{8} + 49891719 x^{7} + 140889166 x^{6} + 241923564 x^{5} + 257168664 x^{4} + 169404496 x^{3} + 67598496 x^{2} + 15021888 x + 1430656 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23646919820900166782460221000494785041305243194753024=-\,2^{21}\cdot 3^{21}\cdot 29^{18}\cdot 41\cdot 11177^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $311.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29, 41, 11177$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{2} + \frac{1}{16} a + \frac{3}{8}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{7}{16} a^{2} - \frac{1}{4}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{16} a^{3} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{16} a^{8} - \frac{1}{16} a^{6} - \frac{3}{32} a^{4} + \frac{3}{32} a^{2} + \frac{1}{8}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{7} - \frac{1}{8} a^{6} + \frac{1}{32} a^{5} + \frac{1}{8} a^{4} + \frac{3}{32} a^{3} + \frac{1}{8} a^{2} - \frac{1}{16} a - \frac{1}{8}$, $\frac{1}{64} a^{14} + \frac{1}{64} a^{10} - \frac{1}{16} a^{8} + \frac{3}{64} a^{6} - \frac{1}{4} a^{4} - \frac{5}{64} a^{2} + \frac{5}{16}$, $\frac{1}{64} a^{15} + \frac{1}{64} a^{11} + \frac{3}{64} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{5}{64} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{256} a^{16} - \frac{1}{128} a^{15} + \frac{1}{256} a^{14} + \frac{1}{256} a^{12} + \frac{1}{128} a^{11} + \frac{5}{256} a^{10} - \frac{1}{64} a^{9} - \frac{9}{256} a^{8} + \frac{1}{128} a^{7} + \frac{3}{256} a^{6} - \frac{3}{32} a^{5} + \frac{59}{256} a^{4} + \frac{31}{128} a^{3} - \frac{73}{256} a^{2} + \frac{23}{64} a + \frac{3}{64}$, $\frac{1}{4096} a^{17} - \frac{1}{512} a^{16} + \frac{25}{4096} a^{15} + \frac{7}{2048} a^{14} - \frac{23}{4096} a^{13} + \frac{13}{1024} a^{12} + \frac{109}{4096} a^{11} + \frac{13}{2048} a^{10} + \frac{31}{4096} a^{9} + \frac{27}{512} a^{8} - \frac{149}{4096} a^{7} + \frac{81}{2048} a^{6} - \frac{269}{4096} a^{5} + \frac{141}{1024} a^{4} + \frac{463}{4096} a^{3} + \frac{507}{2048} a^{2} - \frac{175}{1024} a + \frac{49}{512}$, $\frac{1}{1114112} a^{18} + \frac{3}{32768} a^{17} - \frac{2135}{1114112} a^{16} + \frac{1075}{278528} a^{15} - \frac{19}{1114112} a^{14} - \frac{6807}{557056} a^{13} - \frac{5435}{1114112} a^{12} - \frac{569}{69632} a^{11} + \frac{26699}{1114112} a^{10} - \frac{9835}{557056} a^{9} + \frac{5435}{1114112} a^{8} + \frac{119}{16384} a^{7} - \frac{41329}{1114112} a^{6} - \frac{54897}{557056} a^{5} + \frac{221223}{1114112} a^{4} - \frac{24051}{139264} a^{3} - \frac{29441}{139264} a^{2} - \frac{4357}{17408} a + \frac{34759}{69632}$, $\frac{1}{17825792} a^{19} + \frac{1}{4456448} a^{18} + \frac{925}{17825792} a^{17} - \frac{6387}{8912896} a^{16} - \frac{77611}{17825792} a^{15} + \frac{3971}{2228224} a^{14} - \frac{5039}{1048576} a^{13} - \frac{34173}{8912896} a^{12} + \frac{548971}{17825792} a^{11} - \frac{60643}{4456448} a^{10} - \frac{238553}{17825792} a^{9} + \frac{373123}{8912896} a^{8} + \frac{893399}{17825792} a^{7} - \frac{52301}{557056} a^{6} - \frac{51285}{17825792} a^{5} + \frac{413885}{8912896} a^{4} - \frac{357083}{2228224} a^{3} + \frac{492221}{1114112} a^{2} + \frac{479535}{1114112} a - \frac{276823}{557056}$, $\frac{1}{285212672} a^{20} + \frac{1}{142606336} a^{19} - \frac{107}{285212672} a^{18} + \frac{631}{8912896} a^{17} - \frac{94047}{285212672} a^{16} + \frac{329015}{142606336} a^{15} - \frac{2079439}{285212672} a^{14} - \frac{75119}{71303168} a^{13} - \frac{4332961}{285212672} a^{12} + \frac{3921359}{142606336} a^{11} + \frac{2709311}{285212672} a^{10} - \frac{549801}{35651584} a^{9} + \frac{16117707}{285212672} a^{8} - \frac{3018407}{142606336} a^{7} + \frac{18599659}{285212672} a^{6} + \frac{1148553}{71303168} a^{5} - \frac{8600947}{71303168} a^{4} - \frac{455501}{2228224} a^{3} - \frac{4980299}{17825792} a^{2} + \frac{1254589}{4456448} a + \frac{831063}{4456448}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18354462455100000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.21.31 | $x^{14} - 2 x^{12} - 4 x^{11} + x^{10} + 6 x^{7} - 7 x^{6} - 2 x^{5} - 4 x^{4} + 6 x^{3} - 5 x^{2} - 2 x - 1$ | $2$ | $7$ | $21$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 3]^{7}$ | |
| 3 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ | |
| 41 | Data not computed | ||||||
| 11177 | Data not computed | ||||||