Normalized defining polynomial
\( x^{21} - 51 x^{19} - 28 x^{18} + 900 x^{17} + 792 x^{16} - 7128 x^{15} - 8658 x^{14} + 26442 x^{13} + 50482 x^{12} - 37872 x^{11} - 167574 x^{10} - 9596 x^{9} + 289188 x^{8} + 73785 x^{7} - 233564 x^{6} - 52848 x^{5} + 82296 x^{4} + 13584 x^{3} - 10656 x^{2} - 1152 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1459036715421586200997848591146142154752=-\,2^{14}\cdot 3^{21}\cdot 7\cdot 71^{3}\cdot 149\cdot 283583^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 71, 149, 283583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} + \frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{18} + \frac{1}{16} a^{16} - \frac{1}{4} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{8} a^{11} - \frac{3}{8} a^{10} - \frac{3}{8} a^{9} - \frac{1}{2} a^{8} + \frac{1}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{7}{16} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{19} + \frac{1}{32} a^{17} - \frac{1}{8} a^{16} - \frac{1}{4} a^{15} + \frac{1}{4} a^{13} + \frac{7}{16} a^{12} + \frac{5}{16} a^{11} + \frac{5}{16} a^{10} + \frac{1}{4} a^{9} + \frac{1}{16} a^{8} - \frac{3}{8} a^{7} + \frac{3}{8} a^{6} - \frac{7}{32} a^{5} - \frac{3}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{14605323682120233045564150751080979437632} a^{20} + \frac{14762059907882628589502198188880570081}{3651330920530058261391037687770244859408} a^{19} + \frac{377213489273783578765261742772838070673}{14605323682120233045564150751080979437632} a^{18} + \frac{80721576361177726410946246692697991103}{1825665460265029130695518843885122429704} a^{17} + \frac{173350777926363264518328547097550576801}{1825665460265029130695518843885122429704} a^{16} - \frac{328087266647957746420426235158200995737}{1825665460265029130695518843885122429704} a^{15} + \frac{530055981473796718828213952916855096779}{1825665460265029130695518843885122429704} a^{14} - \frac{546274954415651050007875686256735066777}{7302661841060116522782075375540489718816} a^{13} - \frac{1369305613123538857539462123533086347375}{7302661841060116522782075375540489718816} a^{12} - \frac{491814635682153955424264437085737241591}{7302661841060116522782075375540489718816} a^{11} + \frac{85745308134616996206799795738600842753}{228208182533128641336939855485640303713} a^{10} - \frac{2870897714347400819095395150087287934567}{7302661841060116522782075375540489718816} a^{9} - \frac{1808574309017899215060188424872877935749}{3651330920530058261391037687770244859408} a^{8} + \frac{47155137303125237485778765052737166391}{3651330920530058261391037687770244859408} a^{7} + \frac{1440934788942206504162180263996060469465}{14605323682120233045564150751080979437632} a^{6} - \frac{193653441339408050342571900084120194221}{1825665460265029130695518843885122429704} a^{5} + \frac{573106577000867693490516664246926510449}{3651330920530058261391037687770244859408} a^{4} - \frac{397566906664806251084628371964393441155}{1825665460265029130695518843885122429704} a^{3} - \frac{354663040274859159029485684681086987945}{912832730132514565347759421942561214852} a^{2} - \frac{121603266955301618636086603440537616019}{456416365066257282673879710971280607426} a - \frac{17678894760965751923080456036885146030}{228208182533128641336939855485640303713}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5210059439910 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.7.20134393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | $15{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.10 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{9} + 2 x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.12.0.1 | $x^{12} + 3 x^{2} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.6.3.1 | $x^{6} - 142 x^{4} + 5041 x^{2} - 1431644$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 71.6.0.1 | $x^{6} - 2 x + 13$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 149 | Data not computed | ||||||
| 283583 | Data not computed | ||||||