Normalized defining polynomial
\( x^{21} - 69 x^{19} - 46 x^{18} + 1944 x^{17} + 2592 x^{16} - 27918 x^{15} - 57564 x^{14} + 201627 x^{13} + 631480 x^{12} - 479007 x^{11} - 3445602 x^{10} - 2239627 x^{9} + 7429860 x^{8} + 14247297 x^{7} + 3841026 x^{6} - 15902028 x^{5} - 24390360 x^{4} - 17439440 x^{3} - 7070112 x^{2} - 1571136 x - 149632 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1246717509268840429748140354675211188979247111456423936=-\,2^{42}\cdot 3^{39}\cdot 7^{2}\cdot 13^{15}\cdot 167^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $376.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{23}{64} a^{14} + \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{15}{32} a^{10} + \frac{1}{8} a^{9} + \frac{27}{64} a^{8} + \frac{7}{32} a^{7} - \frac{27}{64} a^{6} - \frac{3}{8} a^{5} - \frac{19}{64} a^{4} + \frac{7}{32} a^{3} + \frac{5}{64} a^{2} + \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{19}{512} a^{15} + \frac{73}{256} a^{14} - \frac{11}{32} a^{13} + \frac{9}{32} a^{12} + \frac{65}{256} a^{11} + \frac{1}{128} a^{10} - \frac{181}{512} a^{9} + \frac{19}{64} a^{8} + \frac{9}{512} a^{7} - \frac{17}{256} a^{6} - \frac{99}{512} a^{5} + \frac{29}{128} a^{4} + \frac{169}{512} a^{3} - \frac{95}{256} a^{2} + \frac{15}{128} a + \frac{11}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{19}{4096} a^{16} + \frac{27}{1024} a^{15} - \frac{373}{1024} a^{14} + \frac{63}{256} a^{13} - \frac{847}{2048} a^{12} + \frac{5}{16} a^{11} + \frac{1859}{4096} a^{10} - \frac{767}{2048} a^{9} + \frac{1753}{4096} a^{8} - \frac{141}{1024} a^{7} - \frac{1567}{4096} a^{6} + \frac{413}{2048} a^{5} + \frac{961}{4096} a^{4} + \frac{127}{256} a^{3} - \frac{9}{512} a^{2} + \frac{63}{128} a + \frac{117}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{23}{32768} a^{17} + \frac{35}{16384} a^{16} - \frac{427}{8192} a^{15} - \frac{1037}{4096} a^{14} - \frac{7999}{16384} a^{13} + \frac{3215}{8192} a^{12} + \frac{7491}{32768} a^{11} - \frac{2337}{8192} a^{10} - \frac{11563}{32768} a^{9} + \frac{2061}{16384} a^{8} - \frac{439}{32768} a^{7} - \frac{1041}{4096} a^{6} - \frac{4787}{32768} a^{5} + \frac{4151}{16384} a^{4} - \frac{517}{4096} a^{3} - \frac{121}{2048} a^{2} + \frac{121}{2048} a + \frac{139}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} - \frac{1}{262144} a^{18} + \frac{13}{16384} a^{17} - \frac{161}{32768} a^{16} + \frac{889}{16384} a^{15} + \frac{65417}{131072} a^{14} - \frac{14487}{32768} a^{13} - \frac{79189}{262144} a^{12} + \frac{50567}{131072} a^{11} + \frac{63421}{262144} a^{10} - \frac{12253}{32768} a^{9} - \frac{74011}{262144} a^{8} - \frac{21865}{131072} a^{7} - \frac{87523}{262144} a^{6} + \frac{27663}{65536} a^{5} + \frac{11419}{65536} a^{4} + \frac{815}{2048} a^{3} - \frac{6749}{16384} a^{2} - \frac{1797}{4096} a - \frac{1631}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1276933808800000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.138584369664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.12.30.161 | $x^{12} + 18 x^{10} - 5 x^{8} + 28 x^{6} + 27 x^{4} - 22 x^{2} - 23$ | $4$ | $3$ | $30$ | 12T87 | $[2, 2, 2, 3, 7/2, 7/2]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13 | Data not computed | ||||||
| 167 | Data not computed | ||||||