Normalized defining polynomial
\( x^{21} - 69 x^{19} - 46 x^{18} + 1899 x^{17} + 2532 x^{16} - 25913 x^{15} - 53514 x^{14} + 169821 x^{13} + 540064 x^{12} - 294975 x^{11} - 2566338 x^{10} - 2052556 x^{9} + 4115808 x^{8} + 9081111 x^{7} + 4512310 x^{6} - 5450004 x^{5} - 10192392 x^{4} - 7520688 x^{3} - 3066336 x^{2} - 681408 x - 64896 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1146287272410593370967257893948595244276204191744=-\,2^{14}\cdot 3^{35}\cdot 13^{2}\cdot 587^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $194.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 587$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8}$, $\frac{1}{72} a^{15} - \frac{1}{6} a^{14} - \frac{1}{8} a^{13} + \frac{1}{12} a^{12} - \frac{11}{24} a^{11} + \frac{3}{8} a^{9} - \frac{5}{12} a^{8} + \frac{1}{8} a^{7} + \frac{1}{18} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{3} a^{3} - \frac{1}{8} a - \frac{1}{12}$, $\frac{1}{576} a^{16} + \frac{1}{288} a^{15} + \frac{29}{192} a^{14} - \frac{31}{192} a^{12} + \frac{47}{96} a^{11} - \frac{79}{192} a^{10} - \frac{19}{48} a^{9} + \frac{47}{192} a^{8} - \frac{91}{288} a^{7} + \frac{29}{576} a^{6} + \frac{3}{8} a^{5} - \frac{23}{48} a^{4} - \frac{5}{24} a^{3} - \frac{1}{64} a^{2} - \frac{5}{48} a - \frac{19}{48}$, $\frac{1}{4608} a^{17} + \frac{19}{4608} a^{15} - \frac{61}{768} a^{14} + \frac{97}{1536} a^{13} + \frac{7}{384} a^{12} + \frac{757}{1536} a^{11} - \frac{23}{768} a^{10} + \frac{391}{1536} a^{9} - \frac{77}{288} a^{8} - \frac{317}{1536} a^{7} - \frac{49}{2304} a^{6} + \frac{133}{384} a^{5} - \frac{1}{32} a^{4} + \frac{589}{1536} a^{3} - \frac{199}{768} a^{2} - \frac{3}{128} a + \frac{83}{192}$, $\frac{1}{36864} a^{18} - \frac{1}{18432} a^{17} + \frac{19}{36864} a^{16} + \frac{3}{1024} a^{15} + \frac{853}{12288} a^{14} + \frac{173}{6144} a^{13} + \frac{63}{4096} a^{12} + \frac{317}{1536} a^{11} - \frac{4637}{12288} a^{10} + \frac{5123}{18432} a^{9} - \frac{10775}{36864} a^{8} + \frac{4291}{9216} a^{7} + \frac{11}{48} a^{6} + \frac{629}{1536} a^{5} + \frac{685}{12288} a^{4} + \frac{635}{1536} a^{3} + \frac{671}{1536} a^{2} + \frac{167}{384} a + \frac{79}{256}$, $\frac{1}{294912} a^{19} - \frac{1}{73728} a^{18} + \frac{23}{294912} a^{17} + \frac{35}{147456} a^{16} - \frac{1753}{294912} a^{15} - \frac{853}{6144} a^{14} + \frac{15881}{98304} a^{13} + \frac{7223}{49152} a^{12} + \frac{2579}{98304} a^{11} - \frac{21203}{73728} a^{10} - \frac{55843}{294912} a^{9} - \frac{54371}{147456} a^{8} - \frac{1699}{36864} a^{7} - \frac{17633}{36864} a^{6} - \frac{33955}{98304} a^{5} - \frac{4289}{49152} a^{4} - \frac{4183}{12288} a^{3} + \frac{431}{6144} a^{2} - \frac{431}{6144} a - \frac{749}{3072}$, $\frac{1}{30670848} a^{20} + \frac{1}{1179648} a^{19} - \frac{25}{3407872} a^{18} - \frac{107}{1277952} a^{17} + \frac{2499}{3407872} a^{16} + \frac{17179}{5111808} a^{15} - \frac{1646551}{10223616} a^{14} + \frac{278687}{2555904} a^{13} - \frac{1105801}{10223616} a^{12} - \frac{821071}{15335424} a^{11} - \frac{9491851}{30670848} a^{10} - \frac{111877}{319488} a^{9} + \frac{212645}{851968} a^{8} + \frac{1693}{425984} a^{7} + \frac{257281}{786432} a^{6} - \frac{673319}{2555904} a^{5} + \frac{710243}{2555904} a^{4} - \frac{8087}{106496} a^{3} + \frac{65137}{212992} a^{2} + \frac{1103}{4096} a - \frac{5}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 527280603584000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3919104 |
| The 288 conjugacy class representatives for t21n131 are not computed |
| Character table for t21n131 is not computed |
Intermediate fields
| 7.7.5461074081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.30 | $x^{14} + 2 x^{13} + 3 x^{12} + 4 x^{8} + 4 x^{7} + 4 x^{6} - 2 x^{5} - 2 x^{3} + 2 x^{2} + 2 x - 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.6.11.10 | $x^{6} + 18 x^{3} + 12$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[5/2]_{2}^{3}$ | |
| 3.6.10.8 | $x^{6} + 3 x^{5} + 12$ | $6$ | $1$ | $10$ | $C_3^2:D_4$ | $[9/4, 9/4]_{4}^{2}$ | |
| 3.6.10.12 | $x^{6} + 3 x^{5} + 3$ | $6$ | $1$ | $10$ | $C_3^2:D_4$ | $[9/4, 9/4]_{4}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 587 | Data not computed | ||||||