Normalized defining polynomial
\( x^{21} - 54 x^{19} - 107 x^{18} + 1125 x^{17} + 4500 x^{16} - 8107 x^{15} - 67779 x^{14} - 36492 x^{13} + 407759 x^{12} + 726822 x^{11} - 648882 x^{10} - 2751741 x^{9} - 1664640 x^{8} + 2055372 x^{7} + 3207811 x^{6} + 1305252 x^{5} - 75792 x^{4} - 149384 x^{3} - 17568 x^{2} + 1632 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10467408193573914265348716396525160262037504=-\,2^{12}\cdot 3^{21}\cdot 11\cdot 23\cdot 149^{6}\cdot 211^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $111.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 23, 149, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{18} - \frac{1}{4} a^{16} + \frac{1}{8} a^{15} + \frac{1}{8} a^{14} - \frac{1}{2} a^{13} + \frac{1}{8} a^{12} + \frac{1}{8} a^{11} - \frac{1}{2} a^{10} + \frac{3}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{19} - \frac{1}{8} a^{17} - \frac{3}{16} a^{16} - \frac{3}{16} a^{15} - \frac{1}{2} a^{14} + \frac{1}{16} a^{13} + \frac{5}{16} a^{12} - \frac{1}{2} a^{11} - \frac{5}{16} a^{10} - \frac{1}{8} a^{9} - \frac{3}{8} a^{8} + \frac{3}{16} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{5}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{1109753734788655820359286964972535797837845344} a^{20} - \frac{3406305765008136441889204211928837851827129}{138719216848581977544910870621566974729730668} a^{19} + \frac{33839654461633380626877632261489883062303657}{554876867394327910179643482486267898918922672} a^{18} + \frac{3846760897274845851328399009717936748788493}{1109753734788655820359286964972535797837845344} a^{17} + \frac{38028583730178410621723213305958094115756205}{1109753734788655820359286964972535797837845344} a^{16} + \frac{57717993440788526218965725486374797839585053}{277438433697163955089821741243133949459461336} a^{15} + \frac{392349661651038094288440492532370539194222069}{1109753734788655820359286964972535797837845344} a^{14} - \frac{132646300408940101571041704335048203240299315}{1109753734788655820359286964972535797837845344} a^{13} + \frac{15635254367119545815093744343554613961115573}{277438433697163955089821741243133949459461336} a^{12} - \frac{477690325008256631052976141915631272811180657}{1109753734788655820359286964972535797837845344} a^{11} - \frac{262930494443100590548501978826652052668168877}{554876867394327910179643482486267898918922672} a^{10} + \frac{234783068607228519397509685576080603401325115}{554876867394327910179643482486267898918922672} a^{9} - \frac{276259134390322625125965748366895690614434997}{1109753734788655820359286964972535797837845344} a^{8} - \frac{16312178807208012397164398139622786763259957}{138719216848581977544910870621566974729730668} a^{7} + \frac{33838371761497491454372395945849118571180213}{277438433697163955089821741243133949459461336} a^{6} - \frac{67856583838244890564817275940221867523708357}{1109753734788655820359286964972535797837845344} a^{5} + \frac{69118932482411404016528534671884359014769611}{277438433697163955089821741243133949459461336} a^{4} + \frac{1967220525218341231817411934551563644668959}{138719216848581977544910870621566974729730668} a^{3} + \frac{12819897657033412139859338407924107732177461}{34679804212145494386227717655391743682432667} a^{2} - \frac{26225506148599705770250867522022440447368493}{69359608424290988772455435310783487364865334} a - \frac{13559281400117346205605692393307899678114143}{34679804212145494386227717655391743682432667}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4169129958300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.7.988410721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | $21$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | $21$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.12.0.1 | $x^{12} + x^{2} - 3 x + 7$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 149 | Data not computed | ||||||
| 211 | Data not computed | ||||||