Normalized defining polynomial
\( x^{21} - 2 x^{20} - 171 x^{19} + 382 x^{18} + 11912 x^{17} - 32481 x^{16} - 429436 x^{15} + 1526480 x^{14} + 8055557 x^{13} - 41248212 x^{12} - 53338116 x^{11} + 608861484 x^{10} - 646770880 x^{9} - 3785920567 x^{8} + 12784485391 x^{7} - 7184639469 x^{6} - 44121815960 x^{5} + 134718155047 x^{4} - 195425045976 x^{3} + 166368871948 x^{2} - 80382298352 x + 17177529344 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72634439335292457799020819225268964693337406014810886144=2^{12}\cdot 149^{6}\cdot 211^{6}\cdot 1249^{2}\cdot 3431015743^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $457.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 149, 211, 1249, 3431015743$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{1468} a^{18} + \frac{133}{1468} a^{17} - \frac{151}{367} a^{16} - \frac{359}{734} a^{15} - \frac{51}{734} a^{14} + \frac{109}{1468} a^{13} - \frac{77}{1468} a^{12} + \frac{169}{1468} a^{11} - \frac{15}{367} a^{10} - \frac{179}{367} a^{9} - \frac{134}{367} a^{8} - \frac{104}{367} a^{7} + \frac{107}{367} a^{6} + \frac{545}{1468} a^{5} + \frac{273}{734} a^{4} + \frac{105}{1468} a^{3} + \frac{27}{1468} a^{2} - \frac{63}{367} a - \frac{59}{367}$, $\frac{1}{2936} a^{19} + \frac{57}{2936} a^{17} + \frac{269}{734} a^{16} + \frac{180}{367} a^{15} + \frac{463}{2936} a^{14} + \frac{53}{1468} a^{13} - \frac{75}{367} a^{12} + \frac{217}{2936} a^{11} + \frac{329}{1468} a^{10} - \frac{91}{367} a^{9} - \frac{265}{734} a^{8} + \frac{180}{367} a^{7} + \frac{873}{2936} a^{6} - \frac{7}{2936} a^{5} + \frac{153}{2936} a^{4} - \frac{363}{1468} a^{3} + \frac{1295}{2936} a^{2} + \frac{125}{1468} a + \frac{70}{367}$, $\frac{1}{256580000768351825369458061462317301306539902810973478472112} a^{20} + \frac{3051372337112268958172776881991306093134562323614843331}{64145000192087956342364515365579325326634975702743369618028} a^{19} + \frac{1763279402231983447004823558693466022286679569892025605}{19736923136027063489958312420178253946656915600844113728624} a^{18} - \frac{1704206136013294649413534401949579092849080989028374136517}{16036250048021989085591128841394831331658743925685842404507} a^{17} - \frac{12165418705618444855312384565404372214277978645598651131193}{32072500096043978171182257682789662663317487851371684809014} a^{16} + \frac{793483569039623919899707257792300318375053281214498449331}{19736923136027063489958312420178253946656915600844113728624} a^{15} + \frac{39359913977736959061523746351705053244115284157587626628215}{128290000384175912684729030731158650653269951405486739236056} a^{14} + \frac{14939930587771296063729972203959868844416473907330049240859}{32072500096043978171182257682789662663317487851371684809014} a^{13} - \frac{82765008186491446892423599974769486617343991850649229592991}{256580000768351825369458061462317301306539902810973478472112} a^{12} - \frac{23213185569062695679347304804619202010503378250325366843569}{128290000384175912684729030731158650653269951405486739236056} a^{11} + \frac{5053721778461090878095955491573021492816423970066876664576}{16036250048021989085591128841394831331658743925685842404507} a^{10} - \frac{11783278521453282660873260973882103847667475856005576388141}{64145000192087956342364515365579325326634975702743369618028} a^{9} + \frac{3325886924231624280655577593134107424282526909851289454843}{32072500096043978171182257682789662663317487851371684809014} a^{8} - \frac{3323369925320378667855365820284885054224633824700829575191}{256580000768351825369458061462317301306539902810973478472112} a^{7} + \frac{114090334577474599710722818148578910028083533994835121766221}{256580000768351825369458061462317301306539902810973478472112} a^{6} - \frac{117037078842243572384457581203614738166867584046885701599571}{256580000768351825369458061462317301306539902810973478472112} a^{5} + \frac{19479616697177467387173759337890266410614509208359463767491}{128290000384175912684729030731158650653269951405486739236056} a^{4} + \frac{30837511169463704692291417730259944138498677346145699058847}{256580000768351825369458061462317301306539902810973478472112} a^{3} - \frac{19210150000661017531791419019006333576897248120354903458357}{128290000384175912684729030731158650653269951405486739236056} a^{2} - \frac{5760344996451677679061767595212960442484931607165167789963}{16036250048021989085591128841394831331658743925685842404507} a + \frac{3714462370389079414698260288056843624214167122436773229710}{16036250048021989085591128841394831331658743925685842404507}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5290182193460000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 352719360 |
| The 150 conjugacy class representatives for t21n148 are not computed |
| Character table for t21n148 is not computed |
Intermediate fields
| 7.7.988410721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | $21$ | $21$ | $15{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $21$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 149 | Data not computed | ||||||
| 211 | Data not computed | ||||||
| 1249 | Data not computed | ||||||
| 3431015743 | Data not computed | ||||||