Properties

Label 21.17.7263443933...6144.1
Degree $21$
Signature $[17, 2]$
Discriminant $2^{12}\cdot 149^{6}\cdot 211^{6}\cdot 1249^{2}\cdot 3431015743^{2}$
Root discriminant $457.15$
Ramified primes $2, 149, 211, 1249, 3431015743$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group 21T148

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![17177529344, -80382298352, 166368871948, -195425045976, 134718155047, -44121815960, -7184639469, 12784485391, -3785920567, -646770880, 608861484, -53338116, -41248212, 8055557, 1526480, -429436, -32481, 11912, 382, -171, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 2*x^20 - 171*x^19 + 382*x^18 + 11912*x^17 - 32481*x^16 - 429436*x^15 + 1526480*x^14 + 8055557*x^13 - 41248212*x^12 - 53338116*x^11 + 608861484*x^10 - 646770880*x^9 - 3785920567*x^8 + 12784485391*x^7 - 7184639469*x^6 - 44121815960*x^5 + 134718155047*x^4 - 195425045976*x^3 + 166368871948*x^2 - 80382298352*x + 17177529344)
 
gp: K = bnfinit(x^21 - 2*x^20 - 171*x^19 + 382*x^18 + 11912*x^17 - 32481*x^16 - 429436*x^15 + 1526480*x^14 + 8055557*x^13 - 41248212*x^12 - 53338116*x^11 + 608861484*x^10 - 646770880*x^9 - 3785920567*x^8 + 12784485391*x^7 - 7184639469*x^6 - 44121815960*x^5 + 134718155047*x^4 - 195425045976*x^3 + 166368871948*x^2 - 80382298352*x + 17177529344, 1)
 

Normalized defining polynomial

\( x^{21} - 2 x^{20} - 171 x^{19} + 382 x^{18} + 11912 x^{17} - 32481 x^{16} - 429436 x^{15} + 1526480 x^{14} + 8055557 x^{13} - 41248212 x^{12} - 53338116 x^{11} + 608861484 x^{10} - 646770880 x^{9} - 3785920567 x^{8} + 12784485391 x^{7} - 7184639469 x^{6} - 44121815960 x^{5} + 134718155047 x^{4} - 195425045976 x^{3} + 166368871948 x^{2} - 80382298352 x + 17177529344 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[17, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(72634439335292457799020819225268964693337406014810886144=2^{12}\cdot 149^{6}\cdot 211^{6}\cdot 1249^{2}\cdot 3431015743^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $457.15$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 149, 211, 1249, 3431015743$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{1468} a^{18} + \frac{133}{1468} a^{17} - \frac{151}{367} a^{16} - \frac{359}{734} a^{15} - \frac{51}{734} a^{14} + \frac{109}{1468} a^{13} - \frac{77}{1468} a^{12} + \frac{169}{1468} a^{11} - \frac{15}{367} a^{10} - \frac{179}{367} a^{9} - \frac{134}{367} a^{8} - \frac{104}{367} a^{7} + \frac{107}{367} a^{6} + \frac{545}{1468} a^{5} + \frac{273}{734} a^{4} + \frac{105}{1468} a^{3} + \frac{27}{1468} a^{2} - \frac{63}{367} a - \frac{59}{367}$, $\frac{1}{2936} a^{19} + \frac{57}{2936} a^{17} + \frac{269}{734} a^{16} + \frac{180}{367} a^{15} + \frac{463}{2936} a^{14} + \frac{53}{1468} a^{13} - \frac{75}{367} a^{12} + \frac{217}{2936} a^{11} + \frac{329}{1468} a^{10} - \frac{91}{367} a^{9} - \frac{265}{734} a^{8} + \frac{180}{367} a^{7} + \frac{873}{2936} a^{6} - \frac{7}{2936} a^{5} + \frac{153}{2936} a^{4} - \frac{363}{1468} a^{3} + \frac{1295}{2936} a^{2} + \frac{125}{1468} a + \frac{70}{367}$, $\frac{1}{256580000768351825369458061462317301306539902810973478472112} a^{20} + \frac{3051372337112268958172776881991306093134562323614843331}{64145000192087956342364515365579325326634975702743369618028} a^{19} + \frac{1763279402231983447004823558693466022286679569892025605}{19736923136027063489958312420178253946656915600844113728624} a^{18} - \frac{1704206136013294649413534401949579092849080989028374136517}{16036250048021989085591128841394831331658743925685842404507} a^{17} - \frac{12165418705618444855312384565404372214277978645598651131193}{32072500096043978171182257682789662663317487851371684809014} a^{16} + \frac{793483569039623919899707257792300318375053281214498449331}{19736923136027063489958312420178253946656915600844113728624} a^{15} + \frac{39359913977736959061523746351705053244115284157587626628215}{128290000384175912684729030731158650653269951405486739236056} a^{14} + \frac{14939930587771296063729972203959868844416473907330049240859}{32072500096043978171182257682789662663317487851371684809014} a^{13} - \frac{82765008186491446892423599974769486617343991850649229592991}{256580000768351825369458061462317301306539902810973478472112} a^{12} - \frac{23213185569062695679347304804619202010503378250325366843569}{128290000384175912684729030731158650653269951405486739236056} a^{11} + \frac{5053721778461090878095955491573021492816423970066876664576}{16036250048021989085591128841394831331658743925685842404507} a^{10} - \frac{11783278521453282660873260973882103847667475856005576388141}{64145000192087956342364515365579325326634975702743369618028} a^{9} + \frac{3325886924231624280655577593134107424282526909851289454843}{32072500096043978171182257682789662663317487851371684809014} a^{8} - \frac{3323369925320378667855365820284885054224633824700829575191}{256580000768351825369458061462317301306539902810973478472112} a^{7} + \frac{114090334577474599710722818148578910028083533994835121766221}{256580000768351825369458061462317301306539902810973478472112} a^{6} - \frac{117037078842243572384457581203614738166867584046885701599571}{256580000768351825369458061462317301306539902810973478472112} a^{5} + \frac{19479616697177467387173759337890266410614509208359463767491}{128290000384175912684729030731158650653269951405486739236056} a^{4} + \frac{30837511169463704692291417730259944138498677346145699058847}{256580000768351825369458061462317301306539902810973478472112} a^{3} - \frac{19210150000661017531791419019006333576897248120354903458357}{128290000384175912684729030731158650653269951405486739236056} a^{2} - \frac{5760344996451677679061767595212960442484931607165167789963}{16036250048021989085591128841394831331658743925685842404507} a + \frac{3714462370389079414698260288056843624214167122436773229710}{16036250048021989085591128841394831331658743925685842404507}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $18$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5290182193460000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

21T148:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 352719360
The 150 conjugacy class representatives for t21n148 are not computed
Character table for t21n148 is not computed

Intermediate fields

7.7.988410721.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 42 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $21$ $21$ $21$ $15{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ $21$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ $21$ ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ $21$ $21$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.10.10.10$x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2, 2]^{5}$
149Data not computed
211Data not computed
1249Data not computed
3431015743Data not computed