Normalized defining polynomial
\( x^{21} - 63 x^{19} - 42 x^{18} + 1413 x^{17} + 1884 x^{16} - 12359 x^{15} - 25974 x^{14} + 15327 x^{13} + 83200 x^{12} + 223371 x^{11} + 493098 x^{10} + 63391 x^{9} - 1791828 x^{8} - 3514005 x^{7} - 3183978 x^{6} - 1524420 x^{5} - 320328 x^{4} + 27408 x^{3} + 30240 x^{2} + 6720 x + 640 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51445872390084496062681169870759985047142400=2^{33}\cdot 3^{21}\cdot 5^{2}\cdot 73^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{2} + \frac{1}{16} a + \frac{3}{8}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{7}{16} a^{2} - \frac{1}{4}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{16} a^{7} + \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{7}{32} a^{3} + \frac{7}{32} a^{2} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{16} a^{8} - \frac{1}{16} a^{6} - \frac{3}{32} a^{4} + \frac{3}{32} a^{2} + \frac{1}{8}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} + \frac{1}{64} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{1}{32} a^{7} + \frac{1}{32} a^{6} - \frac{3}{64} a^{5} + \frac{3}{64} a^{4} + \frac{3}{64} a^{3} + \frac{29}{64} a^{2} + \frac{1}{16} a + \frac{7}{16}$, $\frac{1}{64} a^{14} + \frac{1}{64} a^{10} - \frac{1}{16} a^{8} + \frac{3}{64} a^{6} - \frac{1}{4} a^{4} - \frac{5}{64} a^{2} + \frac{5}{16}$, $\frac{1}{128} a^{15} - \frac{1}{128} a^{14} + \frac{1}{128} a^{11} + \frac{3}{128} a^{10} - \frac{1}{32} a^{8} + \frac{3}{128} a^{7} + \frac{5}{128} a^{6} + \frac{1}{16} a^{5} - \frac{1}{8} a^{4} - \frac{5}{128} a^{3} - \frac{7}{128} a^{2} - \frac{1}{16} a + \frac{5}{32}$, $\frac{1}{256} a^{16} - \frac{1}{256} a^{14} - \frac{3}{256} a^{12} - \frac{1}{64} a^{11} + \frac{7}{256} a^{10} - \frac{1}{64} a^{9} + \frac{7}{256} a^{8} - \frac{1}{32} a^{7} - \frac{11}{256} a^{6} + \frac{3}{32} a^{5} - \frac{9}{256} a^{4} - \frac{13}{64} a^{3} - \frac{123}{256} a^{2} - \frac{21}{64} a - \frac{31}{64}$, $\frac{1}{4096} a^{17} - \frac{1}{512} a^{16} + \frac{9}{4096} a^{15} - \frac{9}{2048} a^{14} + \frac{13}{4096} a^{13} - \frac{15}{1024} a^{12} + \frac{49}{4096} a^{11} + \frac{49}{2048} a^{10} - \frac{57}{4096} a^{9} + \frac{15}{512} a^{8} + \frac{51}{4096} a^{7} - \frac{183}{2048} a^{6} + \frac{375}{4096} a^{5} - \frac{23}{1024} a^{4} - \frac{493}{4096} a^{3} + \frac{559}{2048} a^{2} + \frac{77}{1024} a - \frac{51}{512}$, $\frac{1}{65536} a^{18} + \frac{3}{32768} a^{17} - \frac{39}{65536} a^{16} + \frac{43}{16384} a^{15} + \frac{401}{65536} a^{14} - \frac{67}{32768} a^{13} + \frac{809}{65536} a^{12} - \frac{27}{4096} a^{11} - \frac{1629}{65536} a^{10} - \frac{979}{32768} a^{9} + \frac{387}{65536} a^{8} - \frac{633}{16384} a^{7} - \frac{6413}{65536} a^{6} + \frac{2707}{32768} a^{5} + \frac{459}{65536} a^{4} + \frac{1573}{8192} a^{3} + \frac{1723}{8192} a^{2} + \frac{241}{1024} a + \frac{1147}{4096}$, $\frac{1}{1048576} a^{19} + \frac{1}{262144} a^{18} - \frac{51}{1048576} a^{17} - \frac{131}{524288} a^{16} + \frac{569}{1048576} a^{15} + \frac{651}{131072} a^{14} + \frac{6197}{1048576} a^{13} + \frac{5375}{524288} a^{12} + \frac{771}{1048576} a^{11} - \frac{5563}{262144} a^{10} + \frac{207}{1048576} a^{9} - \frac{3445}{524288} a^{8} - \frac{30533}{1048576} a^{7} - \frac{803}{16384} a^{6} + \frac{72575}{1048576} a^{5} - \frac{16951}{524288} a^{4} - \frac{2127}{131072} a^{3} + \frac{21065}{65536} a^{2} - \frac{16269}{65536} a + \frac{5}{32768}$, $\frac{1}{16777216} a^{20} + \frac{1}{8388608} a^{19} - \frac{59}{16777216} a^{18} - \frac{5}{524288} a^{17} + \frac{1093}{16777216} a^{16} + \frac{2035}{8388608} a^{15} - \frac{4219}{16777216} a^{14} - \frac{8603}{4194304} a^{13} - \frac{53497}{16777216} a^{12} - \frac{11897}{8388608} a^{11} + \frac{175783}{16777216} a^{10} - \frac{25489}{2097152} a^{9} - \frac{344433}{16777216} a^{8} - \frac{191771}{8388608} a^{7} - \frac{86785}{16777216} a^{6} + \frac{209189}{4194304} a^{5} - \frac{1011303}{4194304} a^{4} + \frac{16211}{131072} a^{3} + \frac{523233}{1048576} a^{2} - \frac{49207}{262144} a + \frac{98299}{262144}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2744894558830000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 183 conjugacy class representatives for t21n137 are not computed |
| Character table for t21n137 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.201 | $x^{14} + 8 x^{13} - 2 x^{12} - 4 x^{10} + 8 x^{8} + 8 x^{7} - 6 x^{6} + 4 x^{5} + 8 x^{3} + 2 x^{2} - 6$ | $14$ | $1$ | $27$ | 14T44 | $[18/7, 18/7, 18/7, 20/7, 20/7, 20/7, 3]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.9.0.1 | $x^{9} + x^{2} - 2 x + 2$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 73 | Data not computed | ||||||