Normalized defining polynomial
\( x^{21} - 84 x^{19} - 56 x^{18} + 2376 x^{17} + 3168 x^{16} - 22002 x^{15} - 46116 x^{14} - 63144 x^{13} - 93232 x^{12} + 1201014 x^{11} + 4252980 x^{10} + 3168314 x^{9} - 6373944 x^{8} - 22213458 x^{7} - 45277188 x^{6} - 68252328 x^{5} - 69462864 x^{4} - 45190496 x^{3} - 17986752 x^{2} - 3997056 x - 380672 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4975666366370275989555247135363664150377068540985344=2^{32}\cdot 3^{28}\cdot 73^{12}\cdot 1487^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $289.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73, 1487$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} - \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} - \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} - \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} + \frac{1}{81} a^{9} - \frac{1}{27} a^{6} - \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} + \frac{1}{81} a^{10} - \frac{1}{27} a^{7} - \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{162} a^{14} - \frac{1}{81} a^{11} + \frac{1}{27} a^{8} + \frac{11}{81} a^{5} - \frac{34}{81} a^{2}$, $\frac{1}{1944} a^{15} + \frac{1}{243} a^{12} + \frac{11}{972} a^{9} - \frac{1}{18} a^{8} - \frac{10}{243} a^{6} + \frac{5}{36} a^{5} - \frac{1}{6} a^{4} - \frac{59}{972} a^{3} + \frac{4}{9} a^{2} - \frac{5}{12} a + \frac{55}{486}$, $\frac{1}{15552} a^{16} + \frac{1}{7776} a^{15} - \frac{1}{648} a^{14} - \frac{5}{1944} a^{13} - \frac{7}{1944} a^{12} + \frac{1}{324} a^{11} + \frac{23}{7776} a^{10} - \frac{17}{1944} a^{9} - \frac{5}{216} a^{8} - \frac{25}{486} a^{7} - \frac{53}{7776} a^{6} + \frac{17}{162} a^{5} + \frac{709}{7776} a^{4} + \frac{31}{3888} a^{3} + \frac{425}{2592} a^{2} + \frac{197}{1944} a + \frac{19}{1944}$, $\frac{1}{124416} a^{17} + \frac{1}{31104} a^{15} - \frac{47}{15552} a^{14} - \frac{23}{5184} a^{13} + \frac{1}{3888} a^{12} + \frac{647}{62208} a^{11} - \frac{163}{10368} a^{10} - \frac{43}{15552} a^{9} - \frac{257}{7776} a^{8} - \frac{301}{6912} a^{7} - \frac{323}{31104} a^{6} - \frac{10331}{62208} a^{5} - \frac{137}{5184} a^{4} + \frac{1951}{62208} a^{3} + \frac{15295}{31104} a^{2} + \frac{91}{5184} a + \frac{757}{7776}$, $\frac{1}{2985984} a^{18} + \frac{1}{497664} a^{17} - \frac{5}{248832} a^{16} - \frac{5}{31104} a^{15} + \frac{11}{124416} a^{14} + \frac{209}{62208} a^{13} - \frac{947}{497664} a^{12} + \frac{473}{62208} a^{11} + \frac{7}{62208} a^{10} - \frac{1265}{93312} a^{9} + \frac{4969}{497664} a^{8} + \frac{2261}{124416} a^{7} + \frac{1771}{497664} a^{6} - \frac{34925}{248832} a^{5} + \frac{21661}{497664} a^{4} + \frac{8189}{62208} a^{3} - \frac{5179}{62208} a^{2} + \frac{335}{7776} a + \frac{17615}{93312}$, $\frac{1}{23887872} a^{19} - \frac{1}{5971968} a^{18} + \frac{1}{331776} a^{17} + \frac{5}{995328} a^{16} + \frac{1}{4096} a^{15} - \frac{25}{9216} a^{14} + \frac{6655}{1327104} a^{13} + \frac{995}{1990656} a^{12} - \frac{1385}{165888} a^{11} - \frac{3097}{373248} a^{10} + \frac{147419}{11943936} a^{9} + \frac{8159}{663552} a^{8} - \frac{40861}{3981312} a^{7} - \frac{6139}{165888} a^{6} + \frac{67993}{442368} a^{5} + \frac{77089}{663552} a^{4} + \frac{46811}{497664} a^{3} - \frac{26935}{82944} a^{2} - \frac{292873}{746496} a - \frac{7963}{373248}$, $\frac{1}{191102976} a^{20} + \frac{1}{95551488} a^{19} - \frac{1}{11943936} a^{18} + \frac{7}{7962624} a^{17} - \frac{79}{7962624} a^{16} - \frac{493}{3981312} a^{15} + \frac{1501}{31850496} a^{14} + \frac{24173}{7962624} a^{13} - \frac{2549}{884736} a^{12} + \frac{30811}{5971968} a^{11} + \frac{144155}{95551488} a^{10} + \frac{68621}{5971968} a^{9} - \frac{1097345}{31850496} a^{8} + \frac{112357}{15925248} a^{7} - \frac{758159}{31850496} a^{6} - \frac{785693}{7962624} a^{5} - \frac{63985}{7962624} a^{4} - \frac{18703}{165888} a^{3} + \frac{1143677}{5971968} a^{2} - \frac{582875}{1492992} a + \frac{615103}{1492992}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26957491730500000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2939328 |
| The 99 conjugacy class representatives for t21n127 are not computed |
| Character table for t21n127 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.26.1 | $x^{14} - 2 x^{13} + 2 x^{10} + 4 x^{7} - 2 x^{6} - 2 x^{4} + 4 x^{3} + 4 x - 2$ | $14$ | $1$ | $26$ | 14T35 | $[18/7, 18/7, 18/7, 20/7, 20/7, 20/7]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| 73 | Data not computed | ||||||
| 1487 | Data not computed | ||||||