Normalized defining polynomial
\( x^{21} - 48 x^{19} - 32 x^{18} + 846 x^{17} + 1128 x^{16} - 6536 x^{15} - 13824 x^{14} + 16542 x^{13} + 66640 x^{12} + 42444 x^{11} - 56952 x^{10} - 180078 x^{9} - 351864 x^{8} - 355914 x^{7} + 182412 x^{6} + 980856 x^{5} + 1261296 x^{4} + 870944 x^{3} + 350784 x^{2} + 77952 x + 7424 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(437180092667948699568301352361682597084807166951424=2^{32}\cdot 3^{22}\cdot 29^{2}\cdot 199^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $257.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{3}{16} a^{14} - \frac{1}{8} a^{13} - \frac{9}{32} a^{12} + \frac{1}{16} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{32} a^{8} + \frac{3}{16} a^{7} - \frac{3}{16} a^{6} - \frac{1}{4} a^{5} - \frac{7}{32} a^{4} - \frac{5}{16} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{512} a^{17} - \frac{3}{64} a^{15} - \frac{3}{16} a^{14} - \frac{97}{256} a^{13} - \frac{19}{64} a^{12} - \frac{7}{64} a^{11} + \frac{1}{8} a^{10} + \frac{127}{256} a^{9} - \frac{3}{32} a^{8} - \frac{57}{128} a^{7} - \frac{15}{64} a^{6} + \frac{105}{256} a^{5} + \frac{9}{64} a^{4} + \frac{83}{256} a^{3} + \frac{19}{128} a^{2} + \frac{13}{64} a + \frac{1}{32}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} - \frac{3}{512} a^{16} - \frac{3}{256} a^{15} + \frac{255}{2048} a^{14} - \frac{69}{1024} a^{13} + \frac{159}{512} a^{12} - \frac{85}{256} a^{11} - \frac{961}{2048} a^{10} + \frac{117}{1024} a^{9} - \frac{289}{1024} a^{8} + \frac{53}{256} a^{7} + \frac{481}{2048} a^{6} - \frac{471}{1024} a^{5} - \frac{501}{2048} a^{4} + \frac{3}{16} a^{3} + \frac{61}{256} a^{2} + \frac{5}{64} a - \frac{33}{128}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{5}{8192} a^{17} + \frac{303}{16384} a^{15} - \frac{81}{2048} a^{14} + \frac{185}{1024} a^{13} + \frac{195}{512} a^{12} + \frac{2447}{16384} a^{11} + \frac{27}{4096} a^{10} + \frac{501}{8192} a^{9} + \frac{395}{4096} a^{8} - \frac{2415}{16384} a^{7} + \frac{9}{1024} a^{6} + \frac{5479}{16384} a^{5} + \frac{2741}{8192} a^{4} - \frac{803}{2048} a^{3} + \frac{77}{1024} a^{2} - \frac{437}{1024} a + \frac{161}{512}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{5}{65536} a^{18} - \frac{31}{32768} a^{17} - \frac{465}{131072} a^{16} - \frac{183}{65536} a^{15} + \frac{481}{4096} a^{14} - \frac{275}{2048} a^{13} + \frac{31439}{131072} a^{12} - \frac{14365}{65536} a^{11} - \frac{5351}{65536} a^{10} - \frac{5371}{16384} a^{9} + \frac{19225}{131072} a^{8} - \frac{18181}{65536} a^{7} - \frac{12025}{131072} a^{6} - \frac{13675}{32768} a^{5} - \frac{13687}{32768} a^{4} - \frac{711}{2048} a^{3} + \frac{4025}{8192} a^{2} - \frac{159}{2048} a - \frac{557}{2048}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10071419774400000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2939328 |
| The 99 conjugacy class representatives for t21n127 are not computed |
| Character table for t21n127 is not computed |
Intermediate fields
| 7.7.100367308864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.26.48 | $x^{14} + 2 x^{13} + 4 x^{11} + 4 x^{10} + 4 x^{9} - 2 x^{8} + 4 x^{7} + 2 x^{6} + 4 x^{5} + 2 x^{4} - 2 x^{2} - 2$ | $14$ | $1$ | $26$ | 14T35 | $[16/7, 16/7, 16/7, 20/7, 20/7, 20/7]_{7}^{3}$ | |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| 3.9.9.4 | $x^{9} + 3 x^{6} + 9 x^{4} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| $29$ | 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 29.9.0.1 | $x^{9} - 2 x + 11$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 199 | Data not computed | ||||||