Normalized defining polynomial
\( x^{21} - 8 x^{20} - 348 x^{19} + 3024 x^{18} + 40305 x^{17} - 440536 x^{16} - 1679481 x^{15} + 30563454 x^{14} - 13469087 x^{13} - 1062422296 x^{12} + 3376643844 x^{11} + 15621844277 x^{10} - 107528391994 x^{9} + 48609973691 x^{8} + 1236692996796 x^{7} - 3838480636743 x^{6} + 106835860626 x^{5} + 24805429178070 x^{4} - 67245831255093 x^{3} + 87778802366986 x^{2} - 59670215937464 x + 16989857262797 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3926566176958448757359587989819452371300355828605456367281=17^{6}\cdot 29^{18}\cdot 157^{2}\cdot 5599871521^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $552.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 29, 157, 5599871521$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{17} a^{17} - \frac{2}{17} a^{16} - \frac{6}{17} a^{15} + \frac{3}{17} a^{14} - \frac{1}{17} a^{13} - \frac{4}{17} a^{12} - \frac{7}{17} a^{11} - \frac{7}{17} a^{10} + \frac{4}{17} a^{9} - \frac{3}{17} a^{8} - \frac{2}{17} a^{7} - \frac{1}{17} a^{6} + \frac{3}{17} a^{3} + \frac{1}{17} a^{2} - \frac{7}{17} a + \frac{3}{17}$, $\frac{1}{17} a^{18} + \frac{7}{17} a^{16} + \frac{8}{17} a^{15} + \frac{5}{17} a^{14} - \frac{6}{17} a^{13} + \frac{2}{17} a^{12} - \frac{4}{17} a^{11} + \frac{7}{17} a^{10} + \frac{5}{17} a^{9} - \frac{8}{17} a^{8} - \frac{5}{17} a^{7} - \frac{2}{17} a^{6} + \frac{3}{17} a^{4} + \frac{7}{17} a^{3} - \frac{5}{17} a^{2} + \frac{6}{17} a + \frac{6}{17}$, $\frac{1}{17} a^{19} + \frac{5}{17} a^{16} - \frac{4}{17} a^{15} + \frac{7}{17} a^{14} - \frac{8}{17} a^{13} + \frac{7}{17} a^{12} + \frac{5}{17} a^{11} + \frac{3}{17} a^{10} - \frac{2}{17} a^{9} - \frac{1}{17} a^{8} - \frac{5}{17} a^{7} + \frac{7}{17} a^{6} + \frac{3}{17} a^{5} + \frac{7}{17} a^{4} + \frac{8}{17} a^{3} - \frac{1}{17} a^{2} + \frac{4}{17} a - \frac{4}{17}$, $\frac{1}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{20} - \frac{1915014362862734097791177039346806631927833820446142801717491625485425512021907598784034687332348}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{19} + \frac{2059949804266271189541743203236002552202264736993330176216871899498768409554701650601183494657981}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{18} + \frac{1641910365976717753104800507993705180719932483583182976946153168997543994979552318523998813644822}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{17} - \frac{26462796689720545930211603480831928665028988200449365490355440961162761366126185333635678314907946}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{16} - \frac{27471674728911583158802945095245388209528344320623279387108774874429765702861807373799794074083059}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{15} + \frac{19252807955288750080745162684737701826117511380918649367483461715897656287148852203945384061040340}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{14} - \frac{22192409903645207355033698657557309919445238481939490436555802922430566371760347975480815050874534}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{13} - \frac{194374173286489003317738652165667840171402104341547164607645396381119742095585100318229698107223}{4181525088485836499320373201133333838964710548533009242436828214434644606785342939160015011318421} a^{12} - \frac{4001103604325514264433347500468584616438542502633803795939495501012437280240429570601027881603625}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{11} + \frac{1434847496943097678627448816976252451594024852525438351303687714743884857829671002104562229892789}{4181525088485836499320373201133333838964710548533009242436828214434644606785342939160015011318421} a^{10} + \frac{613716418513921231510349532980167992428398281255453952761602014157269769768007407968878847765664}{1733803085469737085084057180957723786887806812806369685888440966960706300374410486968786712010077} a^{9} + \frac{19602711533801341126199943990699841289714811543451347371514687005474970642906582925760429897055892}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{8} + \frac{14446905727689052105405199185306360872196054400956874409464335324143630124030526009780338526308776}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{7} + \frac{12593683390053675144782711425680736982448013812855700385076862934938445453122612768299176142198801}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{6} - \frac{15252061354504064898383645720303441741099933406440706759970654769813676437206849038744783807542562}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{5} - \frac{10318784313485443974223707195268155111593596998212808562607490891181829855082351848626229358230447}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{4} + \frac{21109236353921990323198833385923428217617135305028955811092475436487559710760238685599475057787070}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a^{3} - \frac{50640398008495913847899863012371501183481190385087594964139497268862261227321645815532438872214}{1733803085469737085084057180957723786887806812806369685888440966960706300374410486968786712010077} a^{2} + \frac{16017072217445321706896949562645672260937312833754636072260085503577504092743718915470306724675966}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157} a + \frac{26677087106194555768292120080920383826936796775603036052968496055409326215871405111812457326311254}{71085926504259220488446344419266675262400079325061157121426079645388958315350829965720255192413157}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3040610496680000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 979776 |
| The 177 conjugacy class representatives for t21n120 are not computed |
| Character table for t21n120 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | $21$ | R | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{10}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| $157$ | $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.3.2.2 | $x^{3} + 785$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 157.3.0.1 | $x^{3} - x + 15$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5599871521 | Data not computed | ||||||