Normalized defining polynomial
\( x^{21} - 3 x^{20} - 255 x^{19} + 1264 x^{18} + 23632 x^{17} - 170192 x^{16} - 891461 x^{15} + 10498950 x^{14} + 1455756 x^{13} - 311526760 x^{12} + 880940057 x^{11} + 3367398701 x^{10} - 23342024476 x^{9} + 25822234850 x^{8} + 153628422529 x^{7} - 625416315254 x^{6} + 853395396753 x^{5} + 152246757803 x^{4} - 2042579501229 x^{3} + 2776667828676 x^{2} - 1655406927382 x + 379836181015 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37373365665650364296394117314252987034643780676609200225=5^{2}\cdot 211^{2}\cdot 577^{10}\cdot 179749^{2}\cdot 504061^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $442.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 211, 577, 179749, 504061$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{17} + \frac{1}{5} a^{15} + \frac{2}{5} a^{14} + \frac{2}{5} a^{13} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{19} - \frac{1}{5} a^{17} + \frac{1}{5} a^{16} + \frac{1}{5} a^{15} - \frac{2}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{20} + \frac{2503698317041744167621322318926602327466720159352734372497642321921181101996432886182897584331}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{19} - \frac{30084062879974351854877153975396296359732634812911646341953344926732066654337856948222950233826}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{18} + \frac{35157628539787256339351405228803478652550899875389654173411994623728145397481851442063888731651}{78802595349933904464278078616688849398969860309335702248543110952040203893624667729711442169425} a^{17} + \frac{141600032531904543983952163119901986017355393070363127290880753587927487045148267928247644559927}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{16} + \frac{51477397641017552466584577834972653572574028682553288628982692682474592260972868115773604974676}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{15} - \frac{27254822126677842563955812191508147649967978901818157726770954660677198418457973202526610536677}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{14} - \frac{22876367436833034787757334412443562651119874018933629097272642499207694002420866509086937926668}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{13} - \frac{108815903700021853698864216575525589761540613315384408383140093539605271619926073207115521473481}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{12} + \frac{32461076926641989871230509993507207862269288833875546290573163879361014856609272630005922879336}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{11} - \frac{1650711421043761306741569009587478252699551937166634135077981415472788264757142486462397798817}{56287568107095646045912913297634892427835614506668358748959364965743002781160476949793887263875} a^{10} + \frac{14583147352362459835734321337301255247008431823112168077141228464554874311658598155149213062911}{78802595349933904464278078616688849398969860309335702248543110952040203893624667729711442169425} a^{9} + \frac{35136891962673027833280892232989296474996712841213027861759018845780867748062942114834684042019}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{8} + \frac{116575620172812442017869273221489047526266575266900636936604231377484402250938144173024837699696}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{7} + \frac{101115492994302466428409177903768276146664293111740731136043456251934190367223133390952182666993}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{6} - \frac{63211397981936947590991849547553646720509825327109113042678799714236423197863657121878005804217}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{5} + \frac{17900604858013280122749264309157394558972661868329204872563170104983253077117640792432676574}{321643246326260834548073790272199385301917797180962049994053514089960015892345582570250784365} a^{4} - \frac{2202051505929264831053800062140138733499021390806652594932519205448822730673263337729974670621}{56287568107095646045912913297634892427835614506668358748959364965743002781160476949793887263875} a^{3} + \frac{71214197319752849194091078843795870290234529691230781270193969555174246886189932802345736268248}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a^{2} - \frac{136028417775800425648627182750785937952733313734737732084060893766134064694932544233717825835742}{394012976749669522321390393083444246994849301546678511242715554760201019468123338648557210847125} a - \frac{9668445305365980965011959481994119105878384010275204487829080000385006015641552037384867604292}{78802595349933904464278078616688849398969860309335702248543110952040203893624667729711442169425}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 351746071852000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 168 conjugacy class representatives for t21n124 are not computed |
| Character table for t21n124 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 211 | Data not computed | ||||||
| 577 | Data not computed | ||||||
| 179749 | Data not computed | ||||||
| 504061 | Data not computed | ||||||