Normalized defining polynomial
\( x^{21} - 48 x^{19} - 32 x^{18} + 909 x^{17} + 1212 x^{16} - 8209 x^{15} - 17226 x^{14} + 31284 x^{13} + 111496 x^{12} + 7614 x^{11} - 304092 x^{10} - 350139 x^{9} + 142452 x^{8} + 622908 x^{7} + 500928 x^{6} + 12528 x^{5} - 272448 x^{4} - 231872 x^{3} - 96768 x^{2} - 21504 x - 2048 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(330985239322495312738299332696447755321344=2^{15}\cdot 3^{21}\cdot 149^{6}\cdot 211^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 149, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{15} - \frac{1}{8} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{3}{16} a^{11} + \frac{1}{8} a^{10} + \frac{3}{16} a^{9} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{5}{16} a^{3} - \frac{3}{8} a^{2}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} + \frac{1}{16} a^{14} + \frac{1}{8} a^{13} + \frac{13}{64} a^{12} - \frac{15}{32} a^{11} + \frac{27}{64} a^{10} - \frac{1}{4} a^{9} - \frac{3}{16} a^{8} + \frac{1}{4} a^{7} - \frac{9}{32} a^{6} - \frac{3}{8} a^{5} + \frac{21}{64} a^{4} - \frac{11}{32} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{512} a^{17} + \frac{1}{64} a^{15} - \frac{1}{16} a^{14} - \frac{3}{512} a^{13} + \frac{47}{128} a^{12} + \frac{199}{512} a^{11} - \frac{21}{256} a^{10} - \frac{21}{128} a^{9} + \frac{19}{64} a^{8} + \frac{23}{256} a^{7} - \frac{31}{128} a^{6} + \frac{149}{512} a^{5} - \frac{11}{128} a^{4} - \frac{35}{128} a^{3} - \frac{1}{16} a^{2} + \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} - \frac{3}{512} a^{16} - \frac{3}{256} a^{15} - \frac{451}{4096} a^{14} - \frac{159}{2048} a^{13} + \frac{943}{4096} a^{12} + \frac{217}{512} a^{11} + \frac{1}{128} a^{10} - \frac{11}{32} a^{9} - \frac{449}{2048} a^{8} + \frac{69}{512} a^{7} + \frac{461}{4096} a^{6} - \frac{1003}{2048} a^{5} - \frac{437}{1024} a^{4} - \frac{177}{512} a^{3} - \frac{9}{32} a^{2} - \frac{1}{8} a + \frac{5}{16}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{5}{8192} a^{17} + \frac{669}{32768} a^{15} - \frac{183}{4096} a^{14} + \frac{5675}{32768} a^{13} + \frac{4021}{16384} a^{12} + \frac{105}{2048} a^{11} + \frac{73}{512} a^{10} + \frac{4543}{16384} a^{9} + \frac{2635}{8192} a^{8} + \frac{11645}{32768} a^{7} - \frac{439}{2048} a^{6} + \frac{539}{4096} a^{5} + \frac{193}{1024} a^{4} + \frac{425}{2048} a^{3} + \frac{15}{128} a^{2} - \frac{7}{128} a - \frac{21}{64}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{5}{65536} a^{18} - \frac{31}{32768} a^{17} - \frac{867}{262144} a^{16} - \frac{261}{131072} a^{15} - \frac{31973}{262144} a^{14} - \frac{10949}{65536} a^{13} + \frac{11187}{65536} a^{12} - \frac{2211}{8192} a^{11} - \frac{45953}{131072} a^{10} - \frac{1807}{8192} a^{9} - \frac{80891}{262144} a^{8} + \frac{65471}{131072} a^{7} + \frac{7151}{32768} a^{6} - \frac{6021}{16384} a^{5} - \frac{2203}{16384} a^{4} + \frac{1635}{8192} a^{3} - \frac{77}{1024} a^{2} - \frac{21}{256} a + \frac{81}{256}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 339181484466000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.7.988410721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | $15{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $21$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.9 | $x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| $149$ | $\Q_{149}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{149}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{149}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 149.3.0.1 | $x^{3} - x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 149.6.0.1 | $x^{6} - x + 14$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 149.9.6.1 | $x^{9} - 22201 x^{3} + 59543082$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 211 | Data not computed | ||||||