Normalized defining polynomial
\( x^{21} - 6 x^{20} - 195 x^{19} + 1519 x^{18} + 13027 x^{17} - 139919 x^{16} - 290522 x^{15} + 6327214 x^{14} - 5921392 x^{13} - 148131958 x^{12} + 451808079 x^{11} + 1510075151 x^{10} - 9364120306 x^{9} + 2915122735 x^{8} + 77020386144 x^{7} - 179136053344 x^{6} - 58307049104 x^{5} + 882621776328 x^{4} - 1644783676116 x^{3} + 1447395678100 x^{2} - 615747281656 x + 94972533868 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3281337268081739185936613474786522802576940259979821056=2^{22}\cdot 3967^{6}\cdot 1504057^{2}\cdot 9419863^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $394.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3967, 1504057, 9419863$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{17} + \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} - \frac{3}{8} a^{10} + \frac{3}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{128} a^{19} - \frac{3}{32} a^{17} + \frac{7}{128} a^{16} - \frac{7}{128} a^{15} + \frac{1}{16} a^{14} + \frac{21}{128} a^{13} - \frac{15}{32} a^{12} + \frac{43}{128} a^{11} + \frac{5}{16} a^{10} - \frac{9}{32} a^{9} - \frac{17}{128} a^{8} - \frac{13}{32} a^{7} - \frac{3}{8} a^{6} + \frac{5}{32} a^{5} - \frac{7}{16} a^{4} + \frac{11}{32} a^{3} + \frac{5}{16} a^{2} - \frac{3}{8} a - \frac{13}{32}$, $\frac{1}{1253192025468085415720890190214321714716355243864734234418595662560701584640440178688} a^{20} - \frac{3071160815722050613943995902406640695928336096361206338478832070403324549221578155}{1253192025468085415720890190214321714716355243864734234418595662560701584640440178688} a^{19} - \frac{1135076398371272515122713868523138062436954008341595385713937388935282331207938915}{313298006367021353930222547553580428679088810966183558604648915640175396160110044672} a^{18} + \frac{106826495842384120499717211766680325497116084208517388420874603525460134730005805867}{1253192025468085415720890190214321714716355243864734234418595662560701584640440178688} a^{17} - \frac{17002366214441717523354991695891057150771743587155495533315898566829497516710334517}{313298006367021353930222547553580428679088810966183558604648915640175396160110044672} a^{16} - \frac{94924867284939531929322631150650725711965360702079574461555051841092854955643555051}{1253192025468085415720890190214321714716355243864734234418595662560701584640440178688} a^{15} - \frac{121290694280571102711300877336710322953719216248509946871078274332147329306069872995}{1253192025468085415720890190214321714716355243864734234418595662560701584640440178688} a^{14} - \frac{526586159338419533196699541472321703408170314584569151349899110912614454225619037315}{1253192025468085415720890190214321714716355243864734234418595662560701584640440178688} a^{13} + \frac{215428528465202244705159401423902789723720807914441611416434955914257108836110015999}{1253192025468085415720890190214321714716355243864734234418595662560701584640440178688} a^{12} + \frac{571478888358399355824488598831768023930215900103510766512779598824247426812484751151}{1253192025468085415720890190214321714716355243864734234418595662560701584640440178688} a^{11} + \frac{39407496968381128124936897555103437400704304489643088352783955765125583292554252545}{313298006367021353930222547553580428679088810966183558604648915640175396160110044672} a^{10} + \frac{447742864852187710352584482215647918075487285787933733636615449183770213275483792507}{1253192025468085415720890190214321714716355243864734234418595662560701584640440178688} a^{9} + \frac{419922589146742256412988982895605553517790200146436157825025271279769515316582181063}{1253192025468085415720890190214321714716355243864734234418595662560701584640440178688} a^{8} + \frac{52546716266480459608887031465829465098195789657630578660728299859148487714804905723}{313298006367021353930222547553580428679088810966183558604648915640175396160110044672} a^{7} - \frac{38446761192587300758287985770973629036014187157382229888346027146386866943422025839}{313298006367021353930222547553580428679088810966183558604648915640175396160110044672} a^{6} - \frac{40794030735896530114380812953833983187974716312086879839184059359416668993562972941}{313298006367021353930222547553580428679088810966183558604648915640175396160110044672} a^{5} + \frac{148734458457536997762011816701228849914488933197202386961295103666405978355085399357}{313298006367021353930222547553580428679088810966183558604648915640175396160110044672} a^{4} + \frac{14739202335055852259014621274673314683966356434832723079755055706954133708132986657}{313298006367021353930222547553580428679088810966183558604648915640175396160110044672} a^{3} + \frac{41367467046990893075662008082688040700519827360894257874623842715605317947760627075}{156649003183510676965111273776790214339544405483091779302324457820087698080055022336} a^{2} + \frac{13306143463127211687519726181869278872113814230282161844867877693417025515315968007}{313298006367021353930222547553580428679088810966183558604648915640175396160110044672} a + \frac{59642200051692029872636188597744313617415861006724531749061410279088659827523022015}{313298006367021353930222547553580428679088810966183558604648915640175396160110044672}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 262278581184000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 23514624 |
| The 132 conjugacy class representatives for t21n145 are not computed |
| Character table for t21n145 is not computed |
Intermediate fields
| 7.7.1007173696.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | $21$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.8.16.76 | $x^{8} + 8 x^{2} + 20$ | $8$ | $1$ | $16$ | $C_2\wr A_4$ | $[2, 2, 2, 2, 5/2]^{6}$ | |
| 3967 | Data not computed | ||||||
| 1504057 | Data not computed | ||||||
| 9419863 | Data not computed | ||||||