Normalized defining polynomial
\( x^{21} - 2 x^{20} - 19 x^{19} + 34 x^{18} + 151 x^{17} - 233 x^{16} - 653 x^{15} + 831 x^{14} + 1676 x^{13} + \cdots + 1 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[17, 2]$ |
| |
| Discriminant: |
\(2725960527801648753674435845823096440269\)
\(\medspace = 3\cdot 683\cdot 1240271\cdot 39356833\cdot 49784320121\cdot 547454828827\)
|
| |
| Root discriminant: | \(75.49\) |
| |
| Galois root discriminant: | $3^{1/2}683^{1/2}1240271^{1/2}39356833^{1/2}49784320121^{1/2}547454828827^{1/2}\approx 5.2210731921719394e+19$ | ||
| Ramified primes: |
\(3\), \(683\), \(1240271\), \(39356833\), \(49784320121\), \(547454828827\)
|
| |
| Discriminant root field: | $\Q(\sqrt{27259\!\cdots\!40269}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $18$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a-1$, $a^{20}-2a^{19}-19a^{18}+34a^{17}+151a^{16}-233a^{15}-653a^{14}+831a^{13}+1676a^{12}-1665a^{11}-2626a^{10}+1895a^{9}+2517a^{8}-1184a^{7}-1458a^{6}+363a^{5}+489a^{4}-33a^{3}-86a^{2}-5a+7$, $a^{20}-2a^{19}-19a^{18}+34a^{17}+151a^{16}-233a^{15}-653a^{14}+831a^{13}+1676a^{12}-1665a^{11}-2626a^{10}+1895a^{9}+2517a^{8}-1184a^{7}-1458a^{6}+363a^{5}+489a^{4}-34a^{3}-85a^{2}-3a+4$, $a^{19}-a^{18}-20a^{17}+14a^{16}+165a^{15}-68a^{14}-721a^{13}+110a^{12}+1786a^{11}+121a^{10}-2505a^{9}-610a^{8}+1907a^{7}+723a^{6}-735a^{5}-372a^{4}+117a^{3}+84a^{2}-3a-7$, $4a^{20}-9a^{19}-74a^{18}+155a^{17}+570a^{16}-1083a^{15}-2379a^{14}+3977a^{13}+5873a^{12}-8336a^{11}-8839a^{10}+10206a^{9}+8173a^{8}-7253a^{7}-4648a^{6}+2910a^{5}+1592a^{4}-620a^{3}-306a^{2}+58a+25$, $79a^{20}-219a^{19}-1336a^{18}+3725a^{17}+9131a^{16}-25580a^{15}-32457a^{14}+91517a^{13}+64399a^{12}-183968a^{11}-72035a^{10}+210266a^{9}+46254a^{8}-134074a^{7}-19965a^{6}+46377a^{5}+6692a^{4}-8123a^{3}-1394a^{2}+556a+117$, $47a^{20}-118a^{19}-834a^{18}+2024a^{17}+6093a^{16}-14063a^{15}-23794a^{14}+51196a^{13}+54077a^{12}-105747a^{11}-73658a^{10}+126200a^{9}+61077a^{8}-85901a^{7}-31662a^{6}+32209a^{5}+10164a^{4}-6086a^{3}-1831a^{2}+444a+135$, $39a^{20}-108a^{19}-656a^{18}+1825a^{17}+4453a^{16}-12416a^{15}-15700a^{14}+43816a^{13}+30909a^{12}-86277a^{11}-34615a^{10}+95548a^{9}+23174a^{8}-58207a^{7}-11260a^{6}+19126a^{5}+4065a^{4}-3230a^{3}-770a^{2}+208a+54$, $42a^{20}-113a^{19}-722a^{18}+1929a^{17}+5052a^{16}-13315a^{15}-18595a^{14}+48006a^{13}+38939a^{12}-97685a^{11}-47467a^{10}+113889a^{9}+34572a^{8}-74972a^{7}-16540a^{6}+27142a^{5}+5488a^{4}-5046a^{3}-1094a^{2}+377a+91$, $40a^{20}-110a^{19}-697a^{18}+1916a^{17}+4979a^{16}-13599a^{15}-18943a^{14}+50979a^{13}+41915a^{12}-109596a^{11}-56047a^{10}+137972a^{9}+47035a^{8}-100494a^{7}-26331a^{6}+40692a^{5}+9838a^{4}-8272a^{3}-2095a^{2}+645a+174$, $51a^{20}-118a^{19}-930a^{18}+2023a^{17}+7026a^{16}-14041a^{15}-28555a^{14}+51031a^{13}+67892a^{12}-105160a^{11}-96719a^{10}+125012a^{9}+82478a^{8}-84252a^{7}-41857a^{6}+30662a^{5}+12336a^{4}-5446a^{3}-1976a^{2}+371a+130$, $30a^{20}-82a^{19}-519a^{18}+1418a^{17}+3663a^{16}-9966a^{15}-13644a^{14}+36862a^{13}+29043a^{12}-77805a^{11}-36142a^{10}+95542a^{9}+26787a^{8}-67366a^{7}-12789a^{6}+26240a^{5}+4309a^{4}-5118a^{3}-935a^{2}+381a+83$, $22a^{20}-44a^{19}-410a^{18}+732a^{17}+3173a^{16}-4860a^{15}-13214a^{14}+16518a^{13}+32082a^{12}-30647a^{11}-46173a^{10}+30632a^{9}+38757a^{8}-15080a^{7}-18244a^{6}+2681a^{5}+4351a^{4}+157a^{3}-422a^{2}-52a+6$, $187a^{20}-439a^{19}-3402a^{18}+7546a^{17}+25638a^{16}-52575a^{15}-103971a^{14}+192162a^{13}+246949a^{12}-399378a^{11}-352463a^{10}+481090a^{9}+302968a^{8}-331161a^{7}-156599a^{6}+124751a^{5}+47561a^{4}-23366a^{3}-7860a^{2}+1695a+527$, $25a^{20}-65a^{19}-425a^{18}+1082a^{17}+2923a^{16}-7196a^{15}-10455a^{14}+24506a^{13}+20793a^{12}-45471a^{11}-22910a^{10}+45194a^{9}+13521a^{8}-22061a^{7}-4242a^{6}+4296a^{5}+490a^{4}-57a^{3}+95a^{2}-49a-22$, $45a^{20}-111a^{19}-799a^{18}+1893a^{17}+5837a^{16}-13044a^{15}-22753a^{14}+46910a^{13}+51409a^{12}-95127a^{11}-69011a^{10}+110342a^{9}+55436a^{8}-71836a^{7}-27093a^{6}+25163a^{5}+7930a^{4}-4316a^{3}-1271a^{2}+280a+83$, $6a^{20}-21a^{19}-85a^{18}+345a^{17}+414a^{16}-2250a^{15}-551a^{14}+7414a^{13}-1923a^{12}-12908a^{11}+8079a^{10}+11081a^{9}-11620a^{8}-3370a^{7}+7740a^{6}-576a^{5}-2550a^{4}+433a^{3}+416a^{2}-52a-27$
|
| |
| Regulator: | \( 5743982678470 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{17}\cdot(2\pi)^{2}\cdot 5743982678470 \cdot 1}{2\cdot\sqrt{2725960527801648753674435845823096440269}}\cr\approx \mathstrut & 0.284638084067667 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 51090942171709440000 |
| The 792 conjugacy class representatives for $S_{21}$ |
| Character table for $S_{21}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 42 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.11.0.1}{11} }{,}\,{\href{/padicField/2.10.0.1}{10} }$ | R | $21$ | ${\href{/padicField/7.13.0.1}{13} }{,}\,{\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.11.0.1}{11} }{,}\,{\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.13.0.1}{13} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.13.0.1}{13} }{,}\,{\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }$ | $20{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | $16{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | $20{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.11.0.1}{11} }{,}\,{\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.9.0.1}{9} }{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ | $19{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 3.5.1.0a1.1 | $x^{5} + 2 x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
| 3.9.1.0a1.1 | $x^{9} + 2 x^{3} + 2 x^{2} + x + 1$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ | |
|
\(683\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | ||
|
\(1240271\)
| $\Q_{1240271}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $15$ | $1$ | $15$ | $0$ | $C_{15}$ | $$[\ ]^{15}$$ | ||
|
\(39356833\)
| $\Q_{39356833}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $11$ | $1$ | $11$ | $0$ | $C_{11}$ | $$[\ ]^{11}$$ | ||
|
\(49784320121\)
| $\Q_{49784320121}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ | ||
| Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ | ||
|
\(547454828827\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $11$ | $1$ | $11$ | $0$ | $C_{11}$ | $$[\ ]^{11}$$ |