Normalized defining polynomial
\( x^{21} - 2 x^{20} - 247 x^{19} + 374 x^{18} + 21338 x^{17} - 46630 x^{16} - 894666 x^{15} + 2940618 x^{14} + 18770143 x^{13} - 94465370 x^{12} - 136594601 x^{11} + 1533079457 x^{10} - 1602281931 x^{9} - 10196324980 x^{8} + 32974204263 x^{7} - 12323502724 x^{6} - 123064374241 x^{5} + 311864589974 x^{4} - 357944054578 x^{3} + 206217600578 x^{2} - 42463522216 x - 5081287879 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2712192105373922519664024881359850830750751437537163927329=17^{4}\cdot 29^{18}\cdot 1486813^{2}\cdot 8354569^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $543.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 29, 1486813, 8354569$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{20} + \frac{1519430184598304724485544226928724312444216970466053823950441161623863609166225433953103505151}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{19} + \frac{1241424096753104240797253275737233382204086828268618751134563156387760180139782158111885142744}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{18} - \frac{9765006797320218118136659852984022594804310831354714247581277672475807197347410073176513367}{191666649617990873766264249567010412898897835630958108449187168496168365469674470386543020069} a^{17} - \frac{996195278438058972307049446618324265181154866526537144000872727440472651175929168926827011247}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{16} - \frac{1286801576220648821000004807791091668578213483389540433349470059749814971823017912746719680215}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{15} + \frac{962467355406086238508754081176372649948821193367296815161591974601487898612200065393479483135}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{14} + \frac{1573738679221272349957775103839198008075895917058686138309917674113773703191932229051672834467}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{13} - \frac{785520941743519217020498619683112817266699451012158738162682396845419213797719696166074386554}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{12} - \frac{1263392192065405743889079663283923708810461834770111428210100023630826593487234053943162191227}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{11} - \frac{34142903265473206781208533846155325199014994810372737619176535332319025258697191185787395540}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{10} + \frac{1445445103919533435277278720961676154986686335229763100284105324657826968365455164171605798660}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{9} - \frac{843540336812346749016163290040486306966963553089685917453777277546191586999894732466970247821}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{8} + \frac{18747537598295248780320064604648485764170775748702763104593165427625385858343801457279235993}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{7} + \frac{69076275743971148663440199933939140660692976447952642896141577633352000551597287981172504691}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{6} - \frac{1032977024318694903740420644638110203850201186782909483846196087983649984652037322370662843484}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{5} - \frac{1509663918646258904924730251894550690859752216276609157719141663337483750275967807388818271668}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{4} + \frac{1198145343659063239974809592231945358087935089067623046771241781948470596725927867493067487078}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{3} + \frac{477206615418106364874605303934385388228060882371859982789940875453395148569527039931433921599}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a^{2} + \frac{1582173378530331131171191929057236360432525277647254158242063377341546164929856328951013157238}{3258333043505844854026492242639177019281263205726287843636181864434862212984465996571231341173} a + \frac{69129248420023307956273084358775929648260892150527001499132018574114275640872128640600737214}{191666649617990873766264249567010412898897835630958108449187168496168365469674470386543020069}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1674418433460000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 979776 |
| The 177 conjugacy class representatives for t21n120 are not computed |
| Character table for t21n120 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | R | $21$ | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29 | Data not computed | ||||||
| 1486813 | Data not computed | ||||||
| 8354569 | Data not computed | ||||||