Normalized defining polynomial
\( x^{21} - 30 x^{19} - 20 x^{18} + 261 x^{17} + 348 x^{16} + 386 x^{15} + 540 x^{14} - 14058 x^{13} - 38368 x^{12} + 21573 x^{11} + 182982 x^{10} + 238397 x^{9} + 75780 x^{8} - 257349 x^{7} - 827098 x^{6} - 1443204 x^{5} - 1539720 x^{4} - 1015280 x^{3} - 405216 x^{2} - 90048 x - 8576 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22434675424853910351209350075254473907901710336=2^{14}\cdot 3^{40}\cdot 29^{6}\cdot 59^{6}\cdot 67^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $161.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29, 59, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{3}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{3}{8} a^{13} - \frac{11}{64} a^{12} - \frac{13}{32} a^{11} - \frac{13}{32} a^{10} + \frac{1}{8} a^{9} + \frac{3}{32} a^{8} + \frac{3}{16} a^{7} + \frac{13}{64} a^{6} - \frac{1}{2} a^{5} + \frac{21}{64} a^{4} - \frac{1}{32} a^{3} + \frac{31}{64} a^{2} - \frac{7}{16} a - \frac{1}{16}$, $\frac{1}{512} a^{17} - \frac{3}{256} a^{15} - \frac{21}{128} a^{14} + \frac{165}{512} a^{13} + \frac{63}{128} a^{12} + \frac{109}{256} a^{11} + \frac{47}{128} a^{10} - \frac{69}{256} a^{9} + \frac{1}{4} a^{8} - \frac{203}{512} a^{7} + \frac{67}{256} a^{6} + \frac{85}{512} a^{5} - \frac{43}{128} a^{4} - \frac{221}{512} a^{3} + \frac{115}{256} a^{2} + \frac{45}{128} a + \frac{1}{64}$, $\frac{1}{45056} a^{18} + \frac{1}{2048} a^{17} - \frac{9}{2048} a^{16} - \frac{1}{512} a^{15} - \frac{3347}{45056} a^{14} - \frac{5227}{22528} a^{13} - \frac{1183}{22528} a^{12} + \frac{287}{5632} a^{11} + \frac{13}{2048} a^{10} - \frac{357}{1024} a^{9} + \frac{6069}{45056} a^{8} - \frac{4475}{11264} a^{7} + \frac{25}{45056} a^{6} + \frac{9809}{22528} a^{5} + \frac{14491}{45056} a^{4} + \frac{941}{5632} a^{3} - \frac{2393}{5632} a^{2} + \frac{1}{352} a - \frac{1093}{2816}$, $\frac{1}{360448} a^{19} - \frac{1}{90112} a^{18} - \frac{3}{16384} a^{17} - \frac{13}{8192} a^{16} - \frac{16547}{360448} a^{15} - \frac{7677}{45056} a^{14} + \frac{57631}{180224} a^{13} + \frac{8209}{90112} a^{12} - \frac{59977}{180224} a^{11} + \frac{857}{4096} a^{10} + \frac{1933}{360448} a^{9} - \frac{37159}{180224} a^{8} - \frac{60463}{360448} a^{7} + \frac{16275}{45056} a^{6} + \frac{149991}{360448} a^{5} + \frac{33621}{180224} a^{4} - \frac{5475}{45056} a^{3} + \frac{7797}{22528} a^{2} - \frac{6053}{22528} a + \frac{3825}{11264}$, $\frac{1}{2883584} a^{20} + \frac{1}{1441792} a^{19} - \frac{13}{1441792} a^{18} + \frac{5}{32768} a^{17} + \frac{12405}{2883584} a^{16} - \frac{38109}{1441792} a^{15} - \frac{98553}{1441792} a^{14} + \frac{8821}{32768} a^{13} - \frac{465213}{1441792} a^{12} - \frac{56757}{720896} a^{11} + \frac{743069}{2883584} a^{10} - \frac{1043}{2816} a^{9} - \frac{1289411}{2883584} a^{8} + \frac{302143}{1441792} a^{7} + \frac{437175}{2883584} a^{6} + \frac{15013}{720896} a^{5} + \frac{17641}{720896} a^{4} + \frac{3963}{45056} a^{3} + \frac{28921}{180224} a^{2} - \frac{9855}{45056} a - \frac{20093}{45056}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22138474101600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 352719360 |
| The 150 conjugacy class representatives for t21n148 are not computed |
| Character table for t21n148 is not computed |
Intermediate fields
| 7.7.2134162809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | $21$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | R | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.37 | $x^{14} + 4 x^{13} - 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{9} + 4 x^{7} + 2 x^{6} + 2 x^{5} + 4 x^{3} + 4 x^{2} - 2 x - 3$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | 3.6.6.1 | $x^{6} + 3 x^{5} - 2$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ |
| 3.6.9.5 | $x^{6} + 3 x^{4} + 3 x^{3} + 15$ | $6$ | $1$ | $9$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| 3.9.25.13 | $x^{9} + 9 x^{8} + 54 x + 39$ | $9$ | $1$ | $25$ | $((C_3^3:C_3):C_2):C_2$ | $[2, 5/2, 17/6, 10/3]_{2}^{2}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 59 | Data not computed | ||||||
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.3.2.2 | $x^{3} + 268$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 67.5.0.1 | $x^{5} - x + 21$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 67.10.0.1 | $x^{10} - x + 20$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |