Normalized defining polynomial
\( x^{21} - 45 x^{19} - 30 x^{18} + 756 x^{17} + 1008 x^{16} - 5361 x^{15} - 11394 x^{14} + 9009 x^{13} + 42592 x^{12} + 48168 x^{11} + 32640 x^{10} - 38489 x^{9} - 224676 x^{8} - 426999 x^{7} - 522910 x^{6} - 521964 x^{5} - 432216 x^{4} - 262224 x^{3} - 102816 x^{2} - 22848 x - 2176 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(190320484737840382843602696822539522453290057728=2^{15}\cdot 3^{21}\cdot 7^{12}\cdot 17^{2}\cdot 173^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $178.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 17, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{8} a^{9} + \frac{1}{4} a^{8} - \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{17}{64} a^{14} - \frac{5}{16} a^{12} - \frac{1}{8} a^{11} - \frac{17}{64} a^{10} - \frac{1}{16} a^{9} + \frac{17}{64} a^{8} + \frac{9}{32} a^{7} - \frac{3}{16} a^{6} + \frac{1}{8} a^{5} - \frac{25}{64} a^{4} - \frac{11}{32} a^{3} + \frac{5}{64} a^{2} + \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} - \frac{21}{512} a^{15} - \frac{47}{256} a^{14} - \frac{53}{128} a^{13} + \frac{3}{16} a^{12} + \frac{191}{512} a^{11} - \frac{17}{256} a^{10} - \frac{167}{512} a^{9} - \frac{9}{32} a^{8} + \frac{13}{32} a^{7} - \frac{5}{16} a^{6} - \frac{41}{512} a^{5} + \frac{23}{128} a^{4} - \frac{207}{512} a^{3} + \frac{33}{256} a^{2} + \frac{63}{128} a + \frac{27}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} - \frac{21}{4096} a^{16} - \frac{13}{1024} a^{15} + \frac{61}{512} a^{14} - \frac{63}{512} a^{13} - \frac{1537}{4096} a^{12} - \frac{45}{128} a^{11} + \frac{1437}{4096} a^{10} - \frac{673}{2048} a^{9} - \frac{33}{256} a^{8} + \frac{15}{64} a^{7} + \frac{1815}{4096} a^{6} + \frac{87}{2048} a^{5} - \frac{391}{4096} a^{4} - \frac{33}{128} a^{3} + \frac{79}{512} a^{2} + \frac{39}{128} a - \frac{91}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{17}{32768} a^{17} - \frac{5}{16384} a^{16} + \frac{37}{2048} a^{15} - \frac{185}{4096} a^{14} + \frac{7663}{32768} a^{13} + \frac{2865}{16384} a^{12} + \frac{12509}{32768} a^{11} - \frac{1055}{8192} a^{10} - \frac{3555}{8192} a^{9} + \frac{191}{1024} a^{8} - \frac{4201}{32768} a^{7} - \frac{27}{256} a^{6} - \frac{4835}{32768} a^{5} + \frac{6007}{16384} a^{4} - \frac{681}{4096} a^{3} - \frac{257}{2048} a^{2} - \frac{1015}{2048} a + \frac{347}{1024}$, $\frac{1}{786432} a^{20} + \frac{1}{393216} a^{19} - \frac{41}{786432} a^{18} - \frac{7}{49152} a^{17} + \frac{133}{196608} a^{16} + \frac{259}{98304} a^{15} - \frac{1217}{786432} a^{14} - \frac{3457}{196608} a^{13} - \frac{18647}{786432} a^{12} + \frac{883}{131072} a^{11} + \frac{4897}{65536} a^{10} + \frac{6257}{32768} a^{9} + \frac{261847}{786432} a^{8} + \frac{149509}{393216} a^{7} + \frac{171037}{786432} a^{6} - \frac{45209}{196608} a^{5} - \frac{24301}{196608} a^{4} + \frac{2497}{12288} a^{3} + \frac{3587}{49152} a^{2} + \frac{187}{12288} a + \frac{17}{12288}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 203677761128000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.6 | $x^{12} - 18 x^{10} + 11 x^{8} - 52 x^{6} - x^{4} + 6 x^{2} - 11$ | $2$ | $6$ | $12$ | 12T105 | $[2, 2, 2, 2]^{12}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $17$ | 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 173 | Data not computed | ||||||