Normalized defining polynomial
\( x^{21} - 18 x^{19} - 16 x^{18} + 36 x^{17} + 300 x^{16} + 1080 x^{15} - 990 x^{14} - 9240 x^{13} - 8424 x^{12} + 32616 x^{11} + 61062 x^{10} - 62433 x^{9} - 127386 x^{8} + 78735 x^{7} + 98312 x^{6} - 51048 x^{5} - 27456 x^{4} + 14400 x^{3} + 1728 x^{2} - 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1398884674421463279959586376937816064=2^{14}\cdot 3^{21}\cdot 71^{3}\cdot 283583^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71, 283583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{16} + \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{1}{8} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{3}{8} a^{7} - \frac{1}{16} a^{6} + \frac{3}{8} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{19} - \frac{1}{16} a^{17} + \frac{1}{8} a^{15} + \frac{3}{8} a^{14} - \frac{1}{4} a^{13} + \frac{1}{16} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{3}{16} a^{8} - \frac{1}{32} a^{7} + \frac{3}{16} a^{6} - \frac{1}{32} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8115990049295060489544711733480994140864} a^{20} + \frac{53381488513884561128988689764823855133}{4057995024647530244772355866740497070432} a^{19} + \frac{56742372298183545164086210463148123337}{4057995024647530244772355866740497070432} a^{18} - \frac{92728467295928694100452079660419548027}{2028997512323765122386177933370248535216} a^{17} + \frac{124728359977005392334788396722153090619}{2028997512323765122386177933370248535216} a^{16} - \frac{400834727542706750302553765286312980775}{2028997512323765122386177933370248535216} a^{15} - \frac{53221013103820818708553568019153753025}{253624689040470640298272241671281066902} a^{14} + \frac{1693985893141672222581404931822537230065}{4057995024647530244772355866740497070432} a^{13} - \frac{671600826123343078540801014109264482873}{2028997512323765122386177933370248535216} a^{12} + \frac{159084613052103921176274405693959707607}{507249378080941280596544483342562133804} a^{11} + \frac{329474037441398694429761445148361678381}{1014498756161882561193088966685124267608} a^{10} + \frac{869357443175205949149556818323370108907}{4057995024647530244772355866740497070432} a^{9} + \frac{147598302420168998411087800116660641947}{8115990049295060489544711733480994140864} a^{8} + \frac{952825258797421780687625855351343352209}{2028997512323765122386177933370248535216} a^{7} + \frac{3202777810118244441644250223885886189463}{8115990049295060489544711733480994140864} a^{6} + \frac{234131280399277953063488003057194839351}{4057995024647530244772355866740497070432} a^{5} + \frac{104591937539257097458107883660943379273}{2028997512323765122386177933370248535216} a^{4} + \frac{16704914783802693858136165413010161431}{1014498756161882561193088966685124267608} a^{3} + \frac{174426569030044231673276041885630864951}{507249378080941280596544483342562133804} a^{2} + \frac{17255889530048546731039979675836394171}{126812344520235320149136120835640533451} a - \frac{50863787685354503919159231328807238839}{126812344520235320149136120835640533451}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 71142558077.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.7.20134393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $15{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.27 | $x^{14} - x^{12} + 2 x^{11} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 2 x - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 71 | Data not computed | ||||||
| 283583 | Data not computed | ||||||