Normalized defining polynomial
\( x^{21} - 48 x^{19} - 32 x^{18} + 891 x^{17} + 1188 x^{16} - 7596 x^{15} - 15984 x^{14} + 24498 x^{13} + 91376 x^{12} + 26676 x^{11} - 181896 x^{10} - 255415 x^{9} - 55836 x^{8} + 176274 x^{7} + 223260 x^{6} + 146664 x^{5} + 73584 x^{4} + 33376 x^{3} + 12096 x^{2} + 2688 x + 256 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1368454290663395665925056058246076672368720216064=2^{41}\cdot 3^{40}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $195.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{13} + \frac{3}{8} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{3}{16} a^{14} - \frac{1}{8} a^{13} + \frac{27}{64} a^{12} + \frac{13}{32} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{32} a^{8} - \frac{3}{16} a^{7} + \frac{3}{16} a^{6} + \frac{1}{4} a^{5} - \frac{23}{64} a^{4} - \frac{5}{32} a^{3} - \frac{5}{32} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{512} a^{17} - \frac{3}{64} a^{15} - \frac{3}{16} a^{14} - \frac{149}{512} a^{13} - \frac{23}{128} a^{12} - \frac{9}{128} a^{11} + \frac{3}{32} a^{10} - \frac{79}{256} a^{9} - \frac{13}{32} a^{8} + \frac{41}{128} a^{7} + \frac{15}{64} a^{6} + \frac{9}{512} a^{5} - \frac{55}{128} a^{4} + \frac{21}{256} a^{3} - \frac{17}{128} a^{2} - \frac{15}{64} a - \frac{11}{32}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} - \frac{3}{512} a^{16} - \frac{3}{256} a^{15} + \frac{555}{4096} a^{14} - \frac{153}{2048} a^{13} + \frac{293}{1024} a^{12} - \frac{113}{512} a^{11} - \frac{127}{2048} a^{10} + \frac{155}{1024} a^{9} + \frac{273}{1024} a^{8} - \frac{109}{256} a^{7} + \frac{793}{4096} a^{6} + \frac{137}{2048} a^{5} - \frac{15}{2048} a^{4} + \frac{109}{512} a^{3} - \frac{95}{256} a^{2} + \frac{9}{64} a + \frac{43}{128}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{5}{8192} a^{17} + \frac{651}{32768} a^{15} - \frac{177}{4096} a^{14} + \frac{735}{4096} a^{13} + \frac{565}{2048} a^{12} - \frac{3319}{16384} a^{11} - \frac{371}{4096} a^{10} - \frac{2085}{8192} a^{9} + \frac{1557}{4096} a^{8} - \frac{12103}{32768} a^{7} + \frac{343}{1024} a^{6} - \frac{6433}{16384} a^{5} + \frac{3305}{8192} a^{4} + \frac{77}{512} a^{3} + \frac{497}{1024} a^{2} - \frac{121}{1024} a - \frac{171}{512}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{5}{65536} a^{18} - \frac{31}{32768} a^{17} - \frac{885}{262144} a^{16} - \frac{291}{131072} a^{15} + \frac{4113}{32768} a^{14} - \frac{1275}{8192} a^{13} + \frac{28537}{131072} a^{12} - \frac{587}{65536} a^{11} + \frac{30359}{65536} a^{10} - \frac{8061}{16384} a^{9} + \frac{1449}{262144} a^{8} - \frac{21093}{131072} a^{7} + \frac{51871}{131072} a^{6} + \frac{10579}{32768} a^{5} + \frac{2099}{32768} a^{4} - \frac{2979}{8192} a^{3} - \frac{3251}{8192} a^{2} + \frac{277}{2048} a + \frac{687}{2048}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 713272843731000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 105 conjugacy class representatives for t21n133 are not computed |
| Character table for t21n133 is not computed |
Intermediate fields
| 7.7.138584369664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | $18{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.12.30.234 | $x^{12} - 30 x^{10} - 27 x^{8} - 4 x^{6} - 5 x^{4} - 30 x^{2} - 9$ | $4$ | $3$ | $30$ | 12T134 | $[2, 2, 2, 3, 7/2, 7/2, 7/2]^{3}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |