Normalized defining polynomial
\( x^{21} - 2 x^{20} - 188 x^{19} + 620 x^{18} + 14541 x^{17} - 69038 x^{16} - 561446 x^{15} + 3848845 x^{14} + 9198020 x^{13} - 117158237 x^{12} + 64814035 x^{11} + 1850304216 x^{10} - 5014858655 x^{9} - 9887285876 x^{8} + 69018534341 x^{7} - 84678531632 x^{6} - 212112372623 x^{5} + 892547830220 x^{4} - 1407183027254 x^{3} + 1184460541052 x^{2} - 525657953924 x + 96694015405 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13046918104871013767913033076517418569520168946822515625=5^{6}\cdot 12437^{6}\cdot 27883^{2}\cdot 538713121^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $421.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 12437, 27883, 538713121$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{12} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{105} a^{18} - \frac{1}{15} a^{17} + \frac{1}{7} a^{16} - \frac{4}{105} a^{15} - \frac{13}{105} a^{14} - \frac{8}{21} a^{13} + \frac{47}{105} a^{12} + \frac{7}{15} a^{11} - \frac{2}{15} a^{10} - \frac{12}{35} a^{9} + \frac{46}{105} a^{8} - \frac{10}{21} a^{7} + \frac{2}{35} a^{6} + \frac{1}{105} a^{5} - \frac{12}{35} a^{4} + \frac{13}{105} a^{3} + \frac{26}{105} a^{2} + \frac{52}{105} a + \frac{1}{21}$, $\frac{1}{105} a^{19} + \frac{1}{105} a^{17} - \frac{4}{105} a^{16} - \frac{2}{35} a^{15} + \frac{3}{35} a^{14} - \frac{23}{105} a^{13} - \frac{1}{15} a^{12} - \frac{1}{5} a^{11} + \frac{41}{105} a^{10} + \frac{4}{105} a^{9} - \frac{8}{105} a^{8} - \frac{29}{105} a^{7} - \frac{9}{35} a^{6} + \frac{41}{105} a^{5} + \frac{41}{105} a^{4} + \frac{47}{105} a^{3} - \frac{11}{105} a^{2} - \frac{16}{105} a - \frac{1}{3}$, $\frac{1}{23130893424210396598799880216674218174787187323024097355176465} a^{20} + \frac{8109595918020843601465794498022215647894413026023214120949}{4626178684842079319759976043334843634957437464604819471035293} a^{19} - \frac{7612765123948072006197365702674512570985315827999113357536}{4626178684842079319759976043334843634957437464604819471035293} a^{18} - \frac{44866118516751262123872970800904470311388422480026561102441}{3304413346315770942685697173810602596398169617574871050739495} a^{17} + \frac{910145385656697531439085907981278239882243075639811659007943}{7710297808070132199599960072224739391595729107674699118392155} a^{16} + \frac{194677366626843671608808998682394753517207390598282602311271}{7710297808070132199599960072224739391595729107674699118392155} a^{15} + \frac{53266819109204103233204624483097551573715564248301263104517}{4626178684842079319759976043334843634957437464604819471035293} a^{14} + \frac{8336351774668150532237528466718337944371855017937681303757583}{23130893424210396598799880216674218174787187323024097355176465} a^{13} - \frac{1502279283689665065404679847905255399422752573743924494692766}{7710297808070132199599960072224739391595729107674699118392155} a^{12} + \frac{1804323165246070219208310740498911821579238374422027205463129}{7710297808070132199599960072224739391595729107674699118392155} a^{11} - \frac{462580630744549936161007569080238054485759447573074990986476}{3304413346315770942685697173810602596398169617574871050739495} a^{10} + \frac{3684382793066146567177496006453281799111694853574894747407751}{7710297808070132199599960072224739391595729107674699118392155} a^{9} - \frac{230498353327027559065861161560500335540289124664069954519521}{660882669263154188537139434762120519279633923514974210147899} a^{8} + \frac{2960780765042719785943276439761699535118429416800035473277188}{23130893424210396598799880216674218174787187323024097355176465} a^{7} - \frac{277132827437600756173764489480069540408596190164084695981678}{660882669263154188537139434762120519279633923514974210147899} a^{6} - \frac{2298072123944188137796256793501516885525832108957591333149973}{4626178684842079319759976043334843634957437464604819471035293} a^{5} + \frac{8804325234037189883307391320184593983759284898128825370604958}{23130893424210396598799880216674218174787187323024097355176465} a^{4} + \frac{1164206375743352093514945197463354012562365859837335742917392}{7710297808070132199599960072224739391595729107674699118392155} a^{3} - \frac{6982664393036845746593264354712986013488291249910751619388392}{23130893424210396598799880216674218174787187323024097355176465} a^{2} + \frac{1486604025862805878006236718198548012205672916989747182203366}{7710297808070132199599960072224739391595729107674699118392155} a + \frac{1569462603032493978021758451887401952092420440056893160818778}{4626178684842079319759976043334843634957437464604819471035293}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 171166137983000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 23514624 |
| The 132 conjugacy class representatives for t21n145 are not computed |
| Character table for t21n145 is not computed |
Intermediate fields
| 7.7.3866974225.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 12437 | Data not computed | ||||||
| 27883 | Data not computed | ||||||
| 538713121 | Data not computed | ||||||