Normalized defining polynomial
\( x^{21} - 45 x^{19} - 30 x^{18} + 756 x^{17} + 1008 x^{16} - 5415 x^{15} - 11502 x^{14} + 9504 x^{13} + 44088 x^{12} + 54054 x^{11} + 47892 x^{10} - 77257 x^{9} - 444996 x^{8} - 684633 x^{7} - 275986 x^{6} + 489132 x^{5} + 837144 x^{4} + 609616 x^{3} + 247968 x^{2} + 55104 x + 5248 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1030734672607869933507362803637337302271442944=2^{14}\cdot 3^{21}\cdot 17\cdot 29^{18}\cdot 41^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{17}{64} a^{14} - \frac{5}{16} a^{12} - \frac{1}{8} a^{11} - \frac{7}{64} a^{10} - \frac{7}{16} a^{9} - \frac{3}{8} a^{7} - \frac{13}{32} a^{6} + \frac{7}{64} a^{4} - \frac{11}{32} a^{3} + \frac{3}{64} a^{2} + \frac{5}{16} a + \frac{3}{16}$, $\frac{1}{512} a^{17} - \frac{21}{512} a^{15} - \frac{47}{256} a^{14} - \frac{53}{128} a^{13} + \frac{3}{16} a^{12} + \frac{137}{512} a^{11} - \frac{71}{256} a^{10} + \frac{7}{64} a^{9} + \frac{21}{64} a^{8} - \frac{53}{256} a^{7} + \frac{13}{128} a^{6} + \frac{199}{512} a^{5} + \frac{39}{128} a^{4} - \frac{145}{512} a^{3} + \frac{71}{256} a^{2} - \frac{39}{128} a + \frac{29}{64}$, $\frac{1}{69632} a^{18} - \frac{1}{2048} a^{17} - \frac{149}{69632} a^{16} - \frac{549}{17408} a^{15} + \frac{117}{512} a^{14} + \frac{65}{512} a^{13} - \frac{13367}{69632} a^{12} + \frac{181}{1088} a^{11} - \frac{7643}{17408} a^{10} + \frac{743}{8704} a^{9} + \frac{2979}{34816} a^{8} + \frac{3337}{8704} a^{7} - \frac{1041}{4096} a^{6} - \frac{6377}{34816} a^{5} - \frac{1337}{4096} a^{4} - \frac{67}{256} a^{3} - \frac{3999}{8704} a^{2} - \frac{627}{2176} a + \frac{1011}{4352}$, $\frac{1}{557056} a^{19} - \frac{1}{139264} a^{18} - \frac{81}{557056} a^{17} + \frac{1019}{278528} a^{16} + \frac{889}{34816} a^{15} + \frac{1223}{4096} a^{14} - \frac{118087}{557056} a^{13} + \frac{118631}{278528} a^{12} + \frac{1733}{8192} a^{11} + \frac{7921}{34816} a^{10} + \frac{70379}{278528} a^{9} + \frac{27423}{139264} a^{8} + \frac{180431}{557056} a^{7} + \frac{3285}{34816} a^{6} - \frac{49573}{557056} a^{5} - \frac{5615}{16384} a^{4} - \frac{28955}{69632} a^{3} - \frac{6431}{34816} a^{2} + \frac{2831}{34816} a + \frac{4557}{17408}$, $\frac{1}{4456448} a^{20} + \frac{1}{2228224} a^{19} + \frac{23}{4456448} a^{18} - \frac{175}{278528} a^{17} + \frac{1845}{1114112} a^{16} - \frac{3677}{557056} a^{15} - \frac{2096887}{4456448} a^{14} - \frac{113463}{1114112} a^{13} + \frac{187701}{557056} a^{12} - \frac{128223}{557056} a^{11} + \frac{1000731}{2228224} a^{10} + \frac{13399}{34816} a^{9} - \frac{69961}{4456448} a^{8} + \frac{883477}{2228224} a^{7} - \frac{1999429}{4456448} a^{6} + \frac{444633}{1114112} a^{5} + \frac{460301}{1114112} a^{4} + \frac{17}{1024} a^{3} + \frac{91285}{278528} a^{2} + \frac{1213}{69632} a + \frac{11207}{69632}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2510830150440000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | R | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | R | $21$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.9 | $x^{14} - 2 x^{13} - x^{12} - 2 x^{11} + 4 x^{10} - 2 x^{9} + 2 x^{8} + 4 x^{7} - 2 x^{6} + 2 x^{5} + 4 x^{4} - 2 x^{3} + 2 x^{2} - 2 x + 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29 | Data not computed | ||||||
| 41 | Data not computed | ||||||