Normalized defining polynomial
\( x^{21} - 3 x^{19} - 2 x^{18} - 162 x^{17} - 216 x^{16} + 873 x^{15} + 1890 x^{14} + 4338 x^{13} + 8488 x^{12} - 17064 x^{11} - 80592 x^{10} - 106609 x^{9} - 54468 x^{8} + 116223 x^{7} + 527006 x^{6} + 1015308 x^{5} + 1115352 x^{4} + 741328 x^{3} + 296352 x^{2} + 65856 x + 6272 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-727593296109443598965662715993236317819319566336=-\,2^{14}\cdot 3^{21}\cdot 7^{5}\cdot 43^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $190.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{56} a^{15} - \frac{1}{2} a^{14} + \frac{1}{56} a^{13} + \frac{5}{28} a^{12} + \frac{5}{28} a^{11} - \frac{3}{7} a^{10} + \frac{25}{56} a^{9} - \frac{9}{28} a^{8} + \frac{3}{28} a^{7} + \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{2}{7} a^{4} + \frac{23}{56} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{448} a^{16} + \frac{1}{224} a^{15} - \frac{167}{448} a^{14} - \frac{1}{28} a^{13} - \frac{13}{224} a^{12} - \frac{15}{112} a^{11} - \frac{79}{448} a^{10} - \frac{55}{112} a^{9} - \frac{71}{224} a^{8} + \frac{47}{112} a^{7} + \frac{11}{28} a^{6} - \frac{9}{28} a^{5} - \frac{177}{448} a^{4} - \frac{19}{224} a^{3} + \frac{13}{64} a^{2} - \frac{5}{16} a - \frac{3}{16}$, $\frac{1}{3584} a^{17} + \frac{3}{512} a^{15} - \frac{289}{1792} a^{14} - \frac{573}{1792} a^{13} + \frac{183}{448} a^{12} + \frac{617}{3584} a^{11} + \frac{353}{1792} a^{10} + \frac{757}{1792} a^{9} - \frac{205}{448} a^{8} - \frac{7}{64} a^{7} - \frac{75}{224} a^{6} + \frac{1711}{3584} a^{5} + \frac{207}{896} a^{4} - \frac{793}{3584} a^{3} - \frac{119}{256} a^{2} - \frac{41}{128} a + \frac{19}{64}$, $\frac{1}{28672} a^{18} - \frac{1}{14336} a^{17} + \frac{3}{4096} a^{16} - \frac{27}{7168} a^{15} - \frac{1787}{14336} a^{14} + \frac{1067}{7168} a^{13} + \frac{13561}{28672} a^{12} - \frac{87}{256} a^{11} - \frac{6093}{14336} a^{10} + \frac{2033}{7168} a^{9} - \frac{113}{512} a^{8} + \frac{195}{896} a^{7} - \frac{2545}{28672} a^{6} - \frac{5137}{14336} a^{5} - \frac{10641}{28672} a^{4} - \frac{613}{1792} a^{3} - \frac{153}{512} a^{2} - \frac{1}{128} a - \frac{83}{256}$, $\frac{1}{229376} a^{19} - \frac{1}{57344} a^{18} + \frac{25}{229376} a^{17} - \frac{75}{114688} a^{16} + \frac{369}{114688} a^{15} - \frac{12909}{28672} a^{14} + \frac{13591}{32768} a^{13} - \frac{55297}{114688} a^{12} + \frac{24131}{114688} a^{11} - \frac{663}{4096} a^{10} + \frac{351}{3584} a^{9} - \frac{1635}{14336} a^{8} + \frac{38223}{229376} a^{7} - \frac{465}{3584} a^{6} + \frac{5811}{229376} a^{5} - \frac{41367}{114688} a^{4} + \frac{13157}{28672} a^{3} - \frac{617}{2048} a^{2} + \frac{177}{2048} a + \frac{339}{1024}$, $\frac{1}{1835008} a^{20} + \frac{1}{917504} a^{19} + \frac{1}{1835008} a^{18} - \frac{81}{917504} a^{16} - \frac{135}{458752} a^{15} - \frac{524495}{1835008} a^{14} + \frac{196977}{458752} a^{13} - \frac{55653}{131072} a^{12} + \frac{136839}{458752} a^{11} - \frac{30951}{114688} a^{10} + \frac{31365}{114688} a^{9} + \frac{634927}{1835008} a^{8} - \frac{178739}{917504} a^{7} - \frac{10635}{262144} a^{6} - \frac{36543}{458752} a^{5} - \frac{146939}{458752} a^{4} - \frac{3307}{7168} a^{3} - \frac{1477}{16384} a^{2} - \frac{77}{4096} a - \frac{7}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65917490471100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | R | $21$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $21$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.9 | $x^{14} - 2 x^{13} - x^{12} - 2 x^{11} + 4 x^{10} - 2 x^{9} + 2 x^{8} + 4 x^{7} - 2 x^{6} + 2 x^{5} + 4 x^{4} - 2 x^{3} + 2 x^{2} - 2 x + 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43 | Data not computed | ||||||