Normalized defining polynomial
\( x^{21} - 5 x^{20} - 147 x^{19} + 855 x^{18} + 8313 x^{17} - 59101 x^{16} - 213419 x^{15} + 2133399 x^{14} + 1553594 x^{13} - 42723266 x^{12} + 42772372 x^{11} + 449457876 x^{10} - 1079884938 x^{9} - 1761084678 x^{8} + 8758478200 x^{7} - 5404777968 x^{6} - 17906984544 x^{5} + 38312104852 x^{4} - 48599758344 x^{3} + 67992573696 x^{2} - 64614140288 x + 23767712416 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6794371816936220522300136015552507232390662697517056=-\,2^{22}\cdot 4129^{6}\cdot 571755108853^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $293.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 4129, 571755108853$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{19} - \frac{1}{8} a^{18} - \frac{1}{8} a^{17} + \frac{1}{8} a^{16} - \frac{1}{8} a^{15} + \frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{12} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{284270416959624321507383376728112376041301606930761461141845101457560426665912816} a^{20} - \frac{2233054098483873683375179059341227706683149224551070673697757137757777832100225}{284270416959624321507383376728112376041301606930761461141845101457560426665912816} a^{19} - \frac{26664833811615386294241965828902998784091077391294394675497463745571620790281179}{284270416959624321507383376728112376041301606930761461141845101457560426665912816} a^{18} - \frac{17527497003526775927050077185434229196813255935447175272532377246118158754591945}{284270416959624321507383376728112376041301606930761461141845101457560426665912816} a^{17} - \frac{7567679953920099614685208768020120077620045720218924575033492660044449888366679}{284270416959624321507383376728112376041301606930761461141845101457560426665912816} a^{16} - \frac{41929046541106562710438349253018944331455140563677602062519209099338988160626981}{284270416959624321507383376728112376041301606930761461141845101457560426665912816} a^{15} + \frac{55180047926396788984289799341227804578115796186287699347763869119320050198428221}{284270416959624321507383376728112376041301606930761461141845101457560426665912816} a^{14} + \frac{46852581379768939839101753568573257838710194567740011772411255438028877933246639}{284270416959624321507383376728112376041301606930761461141845101457560426665912816} a^{13} + \frac{32381922897535236047874228412830080194862352364679476465886095886869836706955433}{142135208479812160753691688364056188020650803465380730570922550728780213332956408} a^{12} + \frac{3878903542788293029182394378166445257853674403324062552618888737935418765917269}{142135208479812160753691688364056188020650803465380730570922550728780213332956408} a^{11} + \frac{95058418610633822891935427555234734491658531446336724328145413567594692414665}{71067604239906080376845844182028094010325401732690365285461275364390106666478204} a^{10} + \frac{25663707365147655809664031912323835833691150467847279707219710810434260730584489}{71067604239906080376845844182028094010325401732690365285461275364390106666478204} a^{9} + \frac{9559308694537281057643897679671747924743150423871384356294524424676391136038271}{142135208479812160753691688364056188020650803465380730570922550728780213332956408} a^{8} + \frac{1958752837187200353306882226028383863126424238624504082366212808908265020376857}{142135208479812160753691688364056188020650803465380730570922550728780213332956408} a^{7} - \frac{2972192238622023214823216952728688959614730187751827421358927141678609051096377}{35533802119953040188422922091014047005162700866345182642730637682195053333239102} a^{6} - \frac{8620566884812555755345273832978776684734771085235558889575336801765368278845573}{35533802119953040188422922091014047005162700866345182642730637682195053333239102} a^{5} - \frac{5144631515382263043747950449040954700066195327132072193316752023808176004878240}{17766901059976520094211461045507023502581350433172591321365318841097526666619551} a^{4} + \frac{5900435620971740941139868140778875115868579994648012679137263519096990644238677}{71067604239906080376845844182028094010325401732690365285461275364390106666478204} a^{3} + \frac{6424897382812158238936818039701702356983021955842588953130317042173587921051429}{35533802119953040188422922091014047005162700866345182642730637682195053333239102} a^{2} + \frac{928773448734044790767285960614531053477540875603193815316894727359702582210055}{17766901059976520094211461045507023502581350433172591321365318841097526666619551} a - \frac{2858297657405029359352761502624112134548255731943683769142489302814263666565505}{17766901059976520094211461045507023502581350433172591321365318841097526666619551}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41775063679700000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 120 conjugacy class representatives for t21n136 are not computed |
| Character table for t21n136 is not computed |
Intermediate fields
| 7.7.1091113024.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | $21$ | $21$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.4.4.5 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.4.4.5 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.4.4.5 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| 4129 | Data not computed | ||||||
| 571755108853 | Data not computed | ||||||