Normalized defining polynomial
\( x^{21} - 24 x^{19} - 16 x^{18} + 81 x^{17} + 108 x^{16} + 2061 x^{15} + 4050 x^{14} - 15687 x^{13} - 48432 x^{12} - 15984 x^{11} + 88368 x^{10} + 224896 x^{9} + 424512 x^{8} + 469797 x^{7} - 11902 x^{6} - 758268 x^{5} - 1046808 x^{4} - 733712 x^{3} - 296352 x^{2} - 65856 x - 6272 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5093153072766105192759639011952654224735236964352=-\,2^{14}\cdot 3^{21}\cdot 7^{6}\cdot 43^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $208.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{56} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} + \frac{25}{56} a^{11} + \frac{3}{7} a^{10} + \frac{1}{56} a^{9} + \frac{1}{4} a^{8} - \frac{19}{56} a^{7} - \frac{1}{14} a^{6} - \frac{1}{14} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{3} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{448} a^{16} + \frac{1}{224} a^{15} + \frac{7}{16} a^{14} + \frac{1}{8} a^{13} - \frac{143}{448} a^{12} - \frac{89}{224} a^{11} - \frac{9}{64} a^{10} - \frac{3}{112} a^{9} + \frac{9}{448} a^{8} + \frac{15}{32} a^{7} - \frac{17}{112} a^{6} - \frac{23}{56} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{13}{64} a^{2} + \frac{5}{16} a + \frac{3}{16}$, $\frac{1}{3584} a^{17} + \frac{13}{32} a^{14} + \frac{641}{3584} a^{13} - \frac{197}{896} a^{12} - \frac{475}{3584} a^{11} - \frac{97}{256} a^{10} - \frac{159}{3584} a^{9} + \frac{5}{28} a^{8} - \frac{221}{448} a^{7} + \frac{101}{224} a^{6} - \frac{17}{224} a^{5} + \frac{1}{8} a^{4} - \frac{141}{512} a^{3} + \frac{119}{256} a^{2} + \frac{41}{128} a - \frac{19}{64}$, $\frac{1}{28672} a^{18} - \frac{1}{14336} a^{17} - \frac{5}{1792} a^{15} + \frac{8481}{28672} a^{14} - \frac{1035}{14336} a^{13} - \frac{2483}{28672} a^{12} - \frac{117}{512} a^{11} + \frac{219}{4096} a^{10} - \frac{2081}{14336} a^{9} + \frac{515}{3584} a^{8} + \frac{289}{896} a^{7} - \frac{283}{1792} a^{6} + \frac{111}{896} a^{5} + \frac{6821}{28672} a^{4} - \frac{185}{3584} a^{3} + \frac{153}{512} a^{2} + \frac{1}{128} a + \frac{83}{256}$, $\frac{1}{229376} a^{19} - \frac{1}{57344} a^{18} + \frac{1}{57344} a^{17} - \frac{5}{14336} a^{16} + \frac{449}{229376} a^{15} + \frac{11957}{28672} a^{14} - \frac{113031}{229376} a^{13} - \frac{793}{114688} a^{12} + \frac{10541}{229376} a^{11} + \frac{13553}{57344} a^{10} + \frac{22567}{57344} a^{9} - \frac{1015}{2048} a^{8} - \frac{2463}{14336} a^{7} + \frac{1605}{3584} a^{6} - \frac{53531}{229376} a^{5} - \frac{495}{16384} a^{4} + \frac{417}{28672} a^{3} + \frac{617}{2048} a^{2} - \frac{177}{2048} a - \frac{339}{1024}$, $\frac{1}{1835008} a^{20} + \frac{1}{917504} a^{19} - \frac{5}{458752} a^{18} - \frac{1}{32768} a^{17} - \frac{31}{1835008} a^{16} + \frac{23}{917504} a^{15} + \frac{2153}{1835008} a^{14} + \frac{2089}{458752} a^{13} + \frac{1025}{1835008} a^{12} - \frac{3313}{131072} a^{11} - \frac{27187}{458752} a^{10} - \frac{16141}{229376} a^{9} - \frac{2085}{114688} a^{8} + \frac{11181}{57344} a^{7} - \frac{649627}{1835008} a^{6} + \frac{18709}{65536} a^{5} + \frac{10337}{65536} a^{4} - \frac{2089}{8192} a^{3} + \frac{1477}{16384} a^{2} + \frac{77}{4096} a + \frac{7}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 294377911758000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.29 | $x^{14} + 2 x^{13} - x^{12} + 2 x^{7} + 2 x^{5} + 2 x^{3} + 2 x - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43 | Data not computed | ||||||