Normalized defining polynomial
\( x^{21} - 42 x^{19} - 28 x^{18} + 567 x^{17} + 756 x^{16} - 2205 x^{15} - 4914 x^{14} - 4977 x^{13} - 5264 x^{12} + 12474 x^{11} + 54684 x^{10} + 75264 x^{9} + 50400 x^{8} + 14613 x^{7} - 7966 x^{6} - 20412 x^{5} - 22680 x^{4} - 15120 x^{3} - 6048 x^{2} - 1344 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3181220474533863069678902335333881959645528064=-\,2^{14}\cdot 3^{21}\cdot 7^{37}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $146.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{4} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{7}{32} a^{14} + \frac{1}{8} a^{13} + \frac{7}{64} a^{12} - \frac{15}{32} a^{11} - \frac{17}{64} a^{10} + \frac{3}{16} a^{9} - \frac{1}{64} a^{8} - \frac{1}{32} a^{7} - \frac{9}{32} a^{6} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{11}{64} a^{2} + \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} - \frac{9}{256} a^{15} - \frac{23}{128} a^{14} + \frac{183}{512} a^{13} + \frac{53}{128} a^{12} + \frac{43}{512} a^{11} - \frac{41}{256} a^{10} - \frac{25}{512} a^{9} + \frac{3}{8} a^{8} + \frac{121}{256} a^{7} + \frac{31}{128} a^{6} - \frac{139}{512} a^{3} + \frac{17}{256} a^{2} - \frac{49}{128} a - \frac{21}{64}$, $\frac{1}{2412544} a^{18} - \frac{1}{2048} a^{17} + \frac{7703}{1206272} a^{16} + \frac{18463}{301568} a^{15} + \frac{455823}{2412544} a^{14} + \frac{328031}{1206272} a^{13} + \frac{343651}{2412544} a^{12} + \frac{1509}{150784} a^{11} - \frac{16775}{126976} a^{10} - \frac{351643}{1206272} a^{9} + \frac{551833}{1206272} a^{8} - \frac{39603}{301568} a^{7} - \frac{128099}{301568} a^{6} + \frac{1625}{4712} a^{5} - \frac{869515}{2412544} a^{4} + \frac{1727}{37696} a^{3} + \frac{81921}{301568} a^{2} + \frac{13745}{37696} a + \frac{64289}{150784}$, $\frac{1}{19300352} a^{19} - \frac{1}{4825088} a^{18} - \frac{5255}{9650176} a^{17} + \frac{35067}{4825088} a^{16} - \frac{144417}{19300352} a^{15} - \frac{501807}{2412544} a^{14} - \frac{4016969}{19300352} a^{13} - \frac{3632599}{9650176} a^{12} + \frac{4353243}{19300352} a^{11} + \frac{1800055}{4825088} a^{10} - \frac{4632505}{9650176} a^{9} + \frac{867437}{4825088} a^{8} + \frac{158715}{2412544} a^{7} - \frac{541729}{1206272} a^{6} + \frac{1230709}{19300352} a^{5} - \frac{3715801}{9650176} a^{4} - \frac{17941}{126976} a^{3} + \frac{136751}{1206272} a^{2} + \frac{188345}{1206272} a - \frac{146837}{603136}$, $\frac{1}{154402816} a^{20} + \frac{1}{77201408} a^{19} + \frac{13}{77201408} a^{18} + \frac{227}{19300352} a^{17} - \frac{668441}{154402816} a^{16} + \frac{295905}{77201408} a^{15} + \frac{19406503}{154402816} a^{14} - \frac{11738873}{38600704} a^{13} + \frac{44483207}{154402816} a^{12} - \frac{24285569}{77201408} a^{11} - \frac{25671493}{77201408} a^{10} + \frac{1176817}{19300352} a^{9} - \frac{4216439}{9650176} a^{8} + \frac{273651}{603136} a^{7} - \frac{75238123}{154402816} a^{6} + \frac{10703299}{38600704} a^{5} + \frac{3868391}{38600704} a^{4} - \frac{1994543}{4825088} a^{3} + \frac{3251891}{9650176} a^{2} - \frac{1073813}{2412544} a - \frac{85679}{2412544}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3816744292220000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $21$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $21$ | $21$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.9 | $x^{14} - 2 x^{13} - x^{12} - 2 x^{11} + 4 x^{10} - 2 x^{9} + 2 x^{8} + 4 x^{7} - 2 x^{6} + 2 x^{5} + 4 x^{4} - 2 x^{3} + 2 x^{2} - 2 x + 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||