Normalized defining polynomial
\( x^{21} - 6 x^{20} - 129 x^{19} + 738 x^{18} + 6841 x^{17} - 34182 x^{16} - 206917 x^{15} + 754770 x^{14} + 4078383 x^{13} - 7593138 x^{12} - 52093363 x^{11} + 8626390 x^{10} + 365734083 x^{9} + 439496302 x^{8} - 804532503 x^{7} - 2198991242 x^{6} - 1696579116 x^{5} - 3038803440 x^{4} - 11303652912 x^{3} - 18939196800 x^{2} - 14663981568 x - 4441714880 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-283369569577324675950460641547443204115057882490208256=-\,2^{26}\cdot 13^{2}\cdot 73^{12}\cdot 1699^{2}\cdot 19440739^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $351.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 73, 1699, 19440739$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{7} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{14} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{3}{16} a^{7} + \frac{1}{8} a^{6} + \frac{1}{16} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{14} - \frac{1}{8} a^{10} + \frac{1}{16} a^{8} + \frac{3}{16} a^{6} - \frac{1}{8} a^{4}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{13} - \frac{1}{16} a^{9} + \frac{1}{16} a^{5}$, $\frac{1}{32} a^{18} + \frac{1}{32} a^{14} + \frac{3}{32} a^{10} - \frac{1}{4} a^{7} - \frac{5}{32} a^{6} + \frac{1}{4} a^{3}$, $\frac{1}{32} a^{19} - \frac{1}{32} a^{15} - \frac{1}{16} a^{13} - \frac{1}{32} a^{11} - \frac{1}{8} a^{9} - \frac{7}{32} a^{7} + \frac{3}{16} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{68863604280657452845143870466324066444401803963453590048} a^{20} - \frac{199081400659146683396658416802278871789270539258315299}{34431802140328726422571935233162033222200901981726795024} a^{19} - \frac{394011054721235730928018593034773069011990768333617023}{34431802140328726422571935233162033222200901981726795024} a^{18} + \frac{38495383737238999101847325857072388205435933413654509}{17215901070164363211285967616581016611100450990863397512} a^{17} - \frac{1909507385778493233716078559594973091721348249288637519}{68863604280657452845143870466324066444401803963453590048} a^{16} - \frac{91060501187866650632452714031437893652922919142617365}{4303975267541090802821491904145254152775112747715849378} a^{15} + \frac{440319307899900118389430732820464717859981376638470859}{34431802140328726422571935233162033222200901981726795024} a^{14} - \frac{577980215451694727092548987393253692412247933166266181}{34431802140328726422571935233162033222200901981726795024} a^{13} - \frac{426981493341314535347303226218119527793517955695862269}{68863604280657452845143870466324066444401803963453590048} a^{12} - \frac{164878369371311905638686015750065727678734278169634801}{34431802140328726422571935233162033222200901981726795024} a^{11} + \frac{2639464757249090188545561005605802202212172322076107733}{34431802140328726422571935233162033222200901981726795024} a^{10} - \frac{1792573495451833767448852346698100898692038294570586943}{17215901070164363211285967616581016611100450990863397512} a^{9} - \frac{3910007132497834537515509719439940596928666333100404641}{68863604280657452845143870466324066444401803963453590048} a^{8} - \frac{264025324618789257589258882156175887881811350915277407}{8607950535082181605642983808290508305550225495431698756} a^{7} + \frac{3018661566202362460199325656515006176769265420449835023}{34431802140328726422571935233162033222200901981726795024} a^{6} + \frac{5771455232542260760109396076225032449637574132420362185}{34431802140328726422571935233162033222200901981726795024} a^{5} + \frac{1786477462105865491650443295150106633779368277976459499}{17215901070164363211285967616581016611100450990863397512} a^{4} + \frac{575878411524356261156610425319549113992872812687054015}{4303975267541090802821491904145254152775112747715849378} a^{3} + \frac{685396593599865476052244687692757868584531599511341392}{2151987633770545401410745952072627076387556373857924689} a^{2} - \frac{214948040152465593306638221311324019180960626039168964}{2151987633770545401410745952072627076387556373857924689} a - \frac{188068925576250674492845651016288014007053307079769554}{2151987633770545401410745952072627076387556373857924689}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48439163443900000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 734832 |
| The 72 conjugacy class representatives for t21n117 are not computed |
| Character table for t21n117 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.20.16 | $x^{14} - 2 x^{13} - 2 x^{12} + 2 x^{11} + 4 x^{10} + 4 x^{9} + 2 x^{7} + 2 x^{6} + 2 x^{4} + 4 x^{2} + 4 x - 2$ | $14$ | $1$ | $20$ | 14T18 | $[12/7, 12/7, 12/7, 2]_{7}^{3}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.9.0.1 | $x^{9} - 2 x + 2$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 73 | Data not computed | ||||||
| 1699 | Data not computed | ||||||
| 19440739 | Data not computed | ||||||