Properties

Label 21.15.283...256.1
Degree $21$
Signature $[15, 3]$
Discriminant $-2.834\times 10^{53}$
Root discriminant \(351.03\)
Ramified primes $2,13,73,1699,19440739$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_3^7.F_8:C_6$ (as 21T117)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 6*x^20 - 129*x^19 + 738*x^18 + 6841*x^17 - 34182*x^16 - 206917*x^15 + 754770*x^14 + 4078383*x^13 - 7593138*x^12 - 52093363*x^11 + 8626390*x^10 + 365734083*x^9 + 439496302*x^8 - 804532503*x^7 - 2198991242*x^6 - 1696579116*x^5 - 3038803440*x^4 - 11303652912*x^3 - 18939196800*x^2 - 14663981568*x - 4441714880)
 
gp: K = bnfinit(y^21 - 6*y^20 - 129*y^19 + 738*y^18 + 6841*y^17 - 34182*y^16 - 206917*y^15 + 754770*y^14 + 4078383*y^13 - 7593138*y^12 - 52093363*y^11 + 8626390*y^10 + 365734083*y^9 + 439496302*y^8 - 804532503*y^7 - 2198991242*y^6 - 1696579116*y^5 - 3038803440*y^4 - 11303652912*y^3 - 18939196800*y^2 - 14663981568*y - 4441714880, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 6*x^20 - 129*x^19 + 738*x^18 + 6841*x^17 - 34182*x^16 - 206917*x^15 + 754770*x^14 + 4078383*x^13 - 7593138*x^12 - 52093363*x^11 + 8626390*x^10 + 365734083*x^9 + 439496302*x^8 - 804532503*x^7 - 2198991242*x^6 - 1696579116*x^5 - 3038803440*x^4 - 11303652912*x^3 - 18939196800*x^2 - 14663981568*x - 4441714880);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 6*x^20 - 129*x^19 + 738*x^18 + 6841*x^17 - 34182*x^16 - 206917*x^15 + 754770*x^14 + 4078383*x^13 - 7593138*x^12 - 52093363*x^11 + 8626390*x^10 + 365734083*x^9 + 439496302*x^8 - 804532503*x^7 - 2198991242*x^6 - 1696579116*x^5 - 3038803440*x^4 - 11303652912*x^3 - 18939196800*x^2 - 14663981568*x - 4441714880)
 

\( x^{21} - 6 x^{20} - 129 x^{19} + 738 x^{18} + 6841 x^{17} - 34182 x^{16} - 206917 x^{15} + \cdots - 4441714880 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[15, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-283369569577324675950460641547443204115057882490208256\) \(\medspace = -\,2^{26}\cdot 13^{2}\cdot 73^{12}\cdot 1699^{2}\cdot 19440739^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(351.03\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(13\), \(73\), \(1699\), \(19440739\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}+\frac{1}{4}a^{3}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}+\frac{1}{4}a^{3}$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{10}-\frac{1}{8}a^{9}-\frac{1}{8}a^{8}+\frac{1}{8}a^{7}+\frac{1}{8}a^{6}+\frac{1}{8}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}$, $\frac{1}{8}a^{12}-\frac{1}{4}a^{7}-\frac{1}{8}a^{4}+\frac{1}{4}a^{3}$, $\frac{1}{8}a^{13}-\frac{1}{4}a^{7}-\frac{1}{8}a^{5}+\frac{1}{4}a^{3}$, $\frac{1}{8}a^{14}-\frac{1}{4}a^{7}-\frac{1}{8}a^{6}+\frac{1}{4}a^{3}$, $\frac{1}{16}a^{15}-\frac{1}{16}a^{13}-\frac{1}{8}a^{10}-\frac{1}{8}a^{8}+\frac{3}{16}a^{7}+\frac{1}{8}a^{6}+\frac{1}{16}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}$, $\frac{1}{16}a^{16}-\frac{1}{16}a^{14}-\frac{1}{8}a^{10}+\frac{1}{16}a^{8}+\frac{3}{16}a^{6}-\frac{1}{8}a^{4}$, $\frac{1}{16}a^{17}-\frac{1}{16}a^{13}-\frac{1}{16}a^{9}+\frac{1}{16}a^{5}$, $\frac{1}{32}a^{18}+\frac{1}{32}a^{14}+\frac{3}{32}a^{10}-\frac{1}{4}a^{7}-\frac{5}{32}a^{6}+\frac{1}{4}a^{3}$, $\frac{1}{32}a^{19}-\frac{1}{32}a^{15}-\frac{1}{16}a^{13}-\frac{1}{32}a^{11}-\frac{1}{8}a^{9}-\frac{7}{32}a^{7}+\frac{3}{16}a^{5}+\frac{1}{4}a^{3}$, $\frac{1}{68\!\cdots\!48}a^{20}-\frac{19\!\cdots\!99}{34\!\cdots\!24}a^{19}-\frac{39\!\cdots\!23}{34\!\cdots\!24}a^{18}+\frac{38\!\cdots\!09}{17\!\cdots\!12}a^{17}-\frac{19\!\cdots\!19}{68\!\cdots\!48}a^{16}-\frac{91\!\cdots\!65}{43\!\cdots\!78}a^{15}+\frac{44\!\cdots\!59}{34\!\cdots\!24}a^{14}-\frac{57\!\cdots\!81}{34\!\cdots\!24}a^{13}-\frac{42\!\cdots\!69}{68\!\cdots\!48}a^{12}-\frac{16\!\cdots\!01}{34\!\cdots\!24}a^{11}+\frac{26\!\cdots\!33}{34\!\cdots\!24}a^{10}-\frac{17\!\cdots\!43}{17\!\cdots\!12}a^{9}-\frac{39\!\cdots\!41}{68\!\cdots\!48}a^{8}-\frac{26\!\cdots\!07}{86\!\cdots\!56}a^{7}+\frac{30\!\cdots\!23}{34\!\cdots\!24}a^{6}+\frac{57\!\cdots\!85}{34\!\cdots\!24}a^{5}+\frac{17\!\cdots\!99}{17\!\cdots\!12}a^{4}+\frac{57\!\cdots\!15}{43\!\cdots\!78}a^{3}+\frac{68\!\cdots\!92}{21\!\cdots\!89}a^{2}-\frac{21\!\cdots\!64}{21\!\cdots\!89}a-\frac{18\!\cdots\!54}{21\!\cdots\!89}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{24\!\cdots\!89}{34\!\cdots\!24}a^{20}-\frac{18\!\cdots\!75}{34\!\cdots\!24}a^{19}-\frac{56\!\cdots\!83}{68\!\cdots\!48}a^{18}+\frac{22\!\cdots\!17}{34\!\cdots\!24}a^{17}+\frac{12\!\cdots\!15}{34\!\cdots\!24}a^{16}-\frac{10\!\cdots\!51}{34\!\cdots\!24}a^{15}-\frac{67\!\cdots\!23}{68\!\cdots\!48}a^{14}+\frac{23\!\cdots\!33}{34\!\cdots\!24}a^{13}+\frac{61\!\cdots\!73}{34\!\cdots\!24}a^{12}-\frac{27\!\cdots\!41}{34\!\cdots\!24}a^{11}-\frac{16\!\cdots\!85}{68\!\cdots\!48}a^{10}+\frac{14\!\cdots\!59}{34\!\cdots\!24}a^{9}+\frac{64\!\cdots\!65}{34\!\cdots\!24}a^{8}+\frac{41\!\cdots\!03}{34\!\cdots\!24}a^{7}-\frac{40\!\cdots\!45}{68\!\cdots\!48}a^{6}-\frac{21\!\cdots\!57}{34\!\cdots\!24}a^{5}-\frac{36\!\cdots\!35}{17\!\cdots\!12}a^{4}-\frac{38\!\cdots\!91}{21\!\cdots\!89}a^{3}-\frac{21\!\cdots\!73}{43\!\cdots\!78}a^{2}-\frac{11\!\cdots\!88}{21\!\cdots\!89}a-\frac{42\!\cdots\!93}{21\!\cdots\!89}$, $\frac{11\!\cdots\!11}{86\!\cdots\!56}a^{20}-\frac{41\!\cdots\!31}{43\!\cdots\!78}a^{19}-\frac{53\!\cdots\!39}{34\!\cdots\!24}a^{18}+\frac{10\!\cdots\!07}{86\!\cdots\!56}a^{17}+\frac{12\!\cdots\!25}{17\!\cdots\!12}a^{16}-\frac{23\!\cdots\!69}{43\!\cdots\!78}a^{15}-\frac{67\!\cdots\!85}{34\!\cdots\!24}a^{14}+\frac{10\!\cdots\!19}{86\!\cdots\!56}a^{13}+\frac{62\!\cdots\!29}{17\!\cdots\!12}a^{12}-\frac{64\!\cdots\!49}{43\!\cdots\!78}a^{11}-\frac{16\!\cdots\!21}{34\!\cdots\!24}a^{10}+\frac{66\!\cdots\!93}{86\!\cdots\!56}a^{9}+\frac{64\!\cdots\!95}{17\!\cdots\!12}a^{8}+\frac{25\!\cdots\!61}{43\!\cdots\!78}a^{7}-\frac{39\!\cdots\!79}{34\!\cdots\!24}a^{6}-\frac{11\!\cdots\!07}{86\!\cdots\!56}a^{5}-\frac{69\!\cdots\!83}{17\!\cdots\!12}a^{4}-\frac{73\!\cdots\!48}{21\!\cdots\!89}a^{3}-\frac{43\!\cdots\!79}{43\!\cdots\!78}a^{2}-\frac{23\!\cdots\!51}{21\!\cdots\!89}a-\frac{89\!\cdots\!59}{21\!\cdots\!89}$, $\frac{50\!\cdots\!31}{86\!\cdots\!56}a^{20}-\frac{15\!\cdots\!87}{34\!\cdots\!24}a^{19}-\frac{14\!\cdots\!38}{21\!\cdots\!89}a^{18}+\frac{18\!\cdots\!03}{34\!\cdots\!24}a^{17}+\frac{10\!\cdots\!83}{34\!\cdots\!24}a^{16}-\frac{85\!\cdots\!11}{34\!\cdots\!24}a^{15}-\frac{28\!\cdots\!51}{34\!\cdots\!24}a^{14}+\frac{19\!\cdots\!35}{34\!\cdots\!24}a^{13}+\frac{26\!\cdots\!33}{17\!\cdots\!12}a^{12}-\frac{23\!\cdots\!49}{34\!\cdots\!24}a^{11}-\frac{34\!\cdots\!77}{17\!\cdots\!12}a^{10}+\frac{12\!\cdots\!41}{34\!\cdots\!24}a^{9}+\frac{55\!\cdots\!71}{34\!\cdots\!24}a^{8}+\frac{54\!\cdots\!19}{34\!\cdots\!24}a^{7}-\frac{17\!\cdots\!43}{34\!\cdots\!24}a^{6}-\frac{18\!\cdots\!55}{34\!\cdots\!24}a^{5}-\frac{15\!\cdots\!69}{86\!\cdots\!56}a^{4}-\frac{13\!\cdots\!27}{86\!\cdots\!56}a^{3}-\frac{18\!\cdots\!19}{43\!\cdots\!78}a^{2}-\frac{98\!\cdots\!40}{21\!\cdots\!89}a-\frac{37\!\cdots\!07}{21\!\cdots\!89}$, $\frac{41\!\cdots\!79}{34\!\cdots\!24}a^{20}-\frac{18\!\cdots\!60}{21\!\cdots\!89}a^{19}-\frac{98\!\cdots\!11}{68\!\cdots\!48}a^{18}+\frac{18\!\cdots\!07}{17\!\cdots\!12}a^{17}+\frac{11\!\cdots\!59}{17\!\cdots\!12}a^{16}-\frac{42\!\cdots\!03}{86\!\cdots\!56}a^{15}-\frac{12\!\cdots\!49}{68\!\cdots\!48}a^{14}+\frac{19\!\cdots\!39}{17\!\cdots\!12}a^{13}+\frac{11\!\cdots\!51}{34\!\cdots\!24}a^{12}-\frac{11\!\cdots\!25}{86\!\cdots\!56}a^{11}-\frac{30\!\cdots\!65}{68\!\cdots\!48}a^{10}+\frac{12\!\cdots\!77}{17\!\cdots\!12}a^{9}+\frac{74\!\cdots\!81}{21\!\cdots\!89}a^{8}+\frac{54\!\cdots\!51}{86\!\cdots\!56}a^{7}-\frac{72\!\cdots\!99}{68\!\cdots\!48}a^{6}-\frac{21\!\cdots\!63}{17\!\cdots\!12}a^{5}-\frac{32\!\cdots\!43}{86\!\cdots\!56}a^{4}-\frac{26\!\cdots\!55}{86\!\cdots\!56}a^{3}-\frac{40\!\cdots\!25}{43\!\cdots\!78}a^{2}-\frac{21\!\cdots\!03}{21\!\cdots\!89}a-\frac{84\!\cdots\!51}{21\!\cdots\!89}$, $\frac{66\!\cdots\!83}{17\!\cdots\!12}a^{20}-\frac{10\!\cdots\!25}{34\!\cdots\!24}a^{19}-\frac{15\!\cdots\!95}{34\!\cdots\!24}a^{18}+\frac{12\!\cdots\!89}{34\!\cdots\!24}a^{17}+\frac{71\!\cdots\!69}{34\!\cdots\!24}a^{16}-\frac{56\!\cdots\!29}{34\!\cdots\!24}a^{15}-\frac{93\!\cdots\!41}{17\!\cdots\!12}a^{14}+\frac{12\!\cdots\!17}{34\!\cdots\!24}a^{13}+\frac{42\!\cdots\!43}{43\!\cdots\!78}a^{12}-\frac{15\!\cdots\!19}{34\!\cdots\!24}a^{11}-\frac{45\!\cdots\!67}{34\!\cdots\!24}a^{10}+\frac{82\!\cdots\!91}{34\!\cdots\!24}a^{9}+\frac{35\!\cdots\!05}{34\!\cdots\!24}a^{8}+\frac{24\!\cdots\!25}{34\!\cdots\!24}a^{7}-\frac{27\!\cdots\!29}{86\!\cdots\!56}a^{6}-\frac{11\!\cdots\!45}{34\!\cdots\!24}a^{5}-\frac{24\!\cdots\!33}{21\!\cdots\!89}a^{4}-\frac{42\!\cdots\!27}{43\!\cdots\!78}a^{3}-\frac{12\!\cdots\!41}{43\!\cdots\!78}a^{2}-\frac{63\!\cdots\!00}{21\!\cdots\!89}a-\frac{23\!\cdots\!11}{21\!\cdots\!89}$, $\frac{75\!\cdots\!69}{34\!\cdots\!24}a^{20}-\frac{27\!\cdots\!19}{17\!\cdots\!12}a^{19}-\frac{17\!\cdots\!29}{68\!\cdots\!48}a^{18}+\frac{42\!\cdots\!36}{21\!\cdots\!89}a^{17}+\frac{10\!\cdots\!85}{86\!\cdots\!56}a^{16}-\frac{15\!\cdots\!05}{17\!\cdots\!12}a^{15}-\frac{22\!\cdots\!03}{68\!\cdots\!48}a^{14}+\frac{90\!\cdots\!67}{43\!\cdots\!78}a^{13}+\frac{20\!\cdots\!65}{34\!\cdots\!24}a^{12}-\frac{42\!\cdots\!79}{17\!\cdots\!12}a^{11}-\frac{54\!\cdots\!59}{68\!\cdots\!48}a^{10}+\frac{27\!\cdots\!49}{21\!\cdots\!89}a^{9}+\frac{10\!\cdots\!69}{17\!\cdots\!12}a^{8}+\frac{17\!\cdots\!69}{17\!\cdots\!12}a^{7}-\frac{13\!\cdots\!93}{68\!\cdots\!48}a^{6}-\frac{93\!\cdots\!77}{43\!\cdots\!78}a^{5}-\frac{29\!\cdots\!65}{43\!\cdots\!78}a^{4}-\frac{49\!\cdots\!91}{86\!\cdots\!56}a^{3}-\frac{72\!\cdots\!15}{43\!\cdots\!78}a^{2}-\frac{38\!\cdots\!96}{21\!\cdots\!89}a-\frac{15\!\cdots\!93}{21\!\cdots\!89}$, $\frac{81\!\cdots\!80}{21\!\cdots\!89}a^{20}-\frac{64\!\cdots\!72}{21\!\cdots\!89}a^{19}-\frac{92\!\cdots\!68}{21\!\cdots\!89}a^{18}+\frac{77\!\cdots\!37}{21\!\cdots\!89}a^{17}+\frac{40\!\cdots\!23}{21\!\cdots\!89}a^{16}-\frac{35\!\cdots\!43}{21\!\cdots\!89}a^{15}-\frac{10\!\cdots\!18}{21\!\cdots\!89}a^{14}+\frac{80\!\cdots\!80}{21\!\cdots\!89}a^{13}+\frac{17\!\cdots\!68}{21\!\cdots\!89}a^{12}-\frac{95\!\cdots\!24}{21\!\cdots\!89}a^{11}-\frac{24\!\cdots\!56}{21\!\cdots\!89}a^{10}+\frac{52\!\cdots\!94}{21\!\cdots\!89}a^{9}+\frac{19\!\cdots\!70}{21\!\cdots\!89}a^{8}-\frac{16\!\cdots\!62}{21\!\cdots\!89}a^{7}-\frac{62\!\cdots\!24}{21\!\cdots\!89}a^{6}-\frac{60\!\cdots\!40}{21\!\cdots\!89}a^{5}-\frac{22\!\cdots\!64}{21\!\cdots\!89}a^{4}-\frac{20\!\cdots\!84}{21\!\cdots\!89}a^{3}-\frac{53\!\cdots\!40}{21\!\cdots\!89}a^{2}-\frac{52\!\cdots\!59}{21\!\cdots\!89}a-\frac{19\!\cdots\!61}{21\!\cdots\!89}$, $\frac{58\!\cdots\!27}{68\!\cdots\!48}a^{20}-\frac{42\!\cdots\!95}{68\!\cdots\!48}a^{19}-\frac{69\!\cdots\!49}{68\!\cdots\!48}a^{18}+\frac{25\!\cdots\!11}{34\!\cdots\!24}a^{17}+\frac{32\!\cdots\!37}{68\!\cdots\!48}a^{16}-\frac{23\!\cdots\!65}{68\!\cdots\!48}a^{15}-\frac{84\!\cdots\!79}{68\!\cdots\!48}a^{14}+\frac{13\!\cdots\!47}{17\!\cdots\!12}a^{13}+\frac{15\!\cdots\!93}{68\!\cdots\!48}a^{12}-\frac{63\!\cdots\!93}{68\!\cdots\!48}a^{11}-\frac{19\!\cdots\!23}{68\!\cdots\!48}a^{10}+\frac{16\!\cdots\!67}{34\!\cdots\!24}a^{9}+\frac{15\!\cdots\!27}{68\!\cdots\!48}a^{8}+\frac{19\!\cdots\!29}{68\!\cdots\!48}a^{7}-\frac{46\!\cdots\!49}{68\!\cdots\!48}a^{6}-\frac{63\!\cdots\!09}{86\!\cdots\!56}a^{5}-\frac{44\!\cdots\!78}{21\!\cdots\!89}a^{4}-\frac{43\!\cdots\!46}{21\!\cdots\!89}a^{3}-\frac{12\!\cdots\!04}{21\!\cdots\!89}a^{2}-\frac{13\!\cdots\!37}{21\!\cdots\!89}a-\frac{50\!\cdots\!23}{21\!\cdots\!89}$, $\frac{13\!\cdots\!75}{68\!\cdots\!48}a^{20}-\frac{25\!\cdots\!67}{17\!\cdots\!12}a^{19}-\frac{76\!\cdots\!59}{34\!\cdots\!24}a^{18}+\frac{77\!\cdots\!85}{43\!\cdots\!78}a^{17}+\frac{69\!\cdots\!45}{68\!\cdots\!48}a^{16}-\frac{28\!\cdots\!23}{34\!\cdots\!24}a^{15}-\frac{22\!\cdots\!43}{86\!\cdots\!56}a^{14}+\frac{64\!\cdots\!07}{34\!\cdots\!24}a^{13}+\frac{32\!\cdots\!13}{68\!\cdots\!48}a^{12}-\frac{48\!\cdots\!95}{21\!\cdots\!89}a^{11}-\frac{21\!\cdots\!47}{34\!\cdots\!24}a^{10}+\frac{20\!\cdots\!43}{17\!\cdots\!12}a^{9}+\frac{34\!\cdots\!83}{68\!\cdots\!48}a^{8}+\frac{25\!\cdots\!61}{34\!\cdots\!24}a^{7}-\frac{26\!\cdots\!91}{17\!\cdots\!12}a^{6}-\frac{55\!\cdots\!41}{34\!\cdots\!24}a^{5}-\frac{24\!\cdots\!87}{43\!\cdots\!78}a^{4}-\frac{42\!\cdots\!01}{86\!\cdots\!56}a^{3}-\frac{29\!\cdots\!04}{21\!\cdots\!89}a^{2}-\frac{29\!\cdots\!98}{21\!\cdots\!89}a-\frac{10\!\cdots\!31}{21\!\cdots\!89}$, $\frac{22\!\cdots\!47}{68\!\cdots\!48}a^{20}-\frac{44\!\cdots\!69}{17\!\cdots\!12}a^{19}-\frac{25\!\cdots\!11}{68\!\cdots\!48}a^{18}+\frac{10\!\cdots\!17}{34\!\cdots\!24}a^{17}+\frac{11\!\cdots\!09}{68\!\cdots\!48}a^{16}-\frac{50\!\cdots\!29}{34\!\cdots\!24}a^{15}-\frac{29\!\cdots\!53}{68\!\cdots\!48}a^{14}+\frac{58\!\cdots\!71}{17\!\cdots\!12}a^{13}+\frac{53\!\cdots\!93}{68\!\cdots\!48}a^{12}-\frac{70\!\cdots\!23}{17\!\cdots\!12}a^{11}-\frac{74\!\cdots\!13}{68\!\cdots\!48}a^{10}+\frac{78\!\cdots\!67}{34\!\cdots\!24}a^{9}+\frac{61\!\cdots\!95}{68\!\cdots\!48}a^{8}-\frac{10\!\cdots\!07}{34\!\cdots\!24}a^{7}-\frac{19\!\cdots\!75}{68\!\cdots\!48}a^{6}-\frac{50\!\cdots\!59}{17\!\cdots\!12}a^{5}-\frac{10\!\cdots\!89}{86\!\cdots\!56}a^{4}-\frac{39\!\cdots\!07}{43\!\cdots\!78}a^{3}-\frac{53\!\cdots\!35}{21\!\cdots\!89}a^{2}-\frac{53\!\cdots\!06}{21\!\cdots\!89}a-\frac{19\!\cdots\!51}{21\!\cdots\!89}$, $\frac{17\!\cdots\!30}{21\!\cdots\!89}a^{20}-\frac{22\!\cdots\!69}{34\!\cdots\!24}a^{19}-\frac{66\!\cdots\!11}{68\!\cdots\!48}a^{18}+\frac{67\!\cdots\!71}{86\!\cdots\!56}a^{17}+\frac{75\!\cdots\!45}{17\!\cdots\!12}a^{16}-\frac{62\!\cdots\!47}{17\!\cdots\!12}a^{15}-\frac{77\!\cdots\!99}{68\!\cdots\!48}a^{14}+\frac{28\!\cdots\!65}{34\!\cdots\!24}a^{13}+\frac{35\!\cdots\!77}{17\!\cdots\!12}a^{12}-\frac{34\!\cdots\!47}{34\!\cdots\!24}a^{11}-\frac{18\!\cdots\!45}{68\!\cdots\!48}a^{10}+\frac{11\!\cdots\!87}{21\!\cdots\!89}a^{9}+\frac{18\!\cdots\!07}{86\!\cdots\!56}a^{8}+\frac{30\!\cdots\!49}{17\!\cdots\!12}a^{7}-\frac{47\!\cdots\!77}{68\!\cdots\!48}a^{6}-\frac{24\!\cdots\!77}{34\!\cdots\!24}a^{5}-\frac{54\!\cdots\!21}{21\!\cdots\!89}a^{4}-\frac{18\!\cdots\!13}{86\!\cdots\!56}a^{3}-\frac{12\!\cdots\!59}{21\!\cdots\!89}a^{2}-\frac{13\!\cdots\!03}{21\!\cdots\!89}a-\frac{48\!\cdots\!59}{21\!\cdots\!89}$, $\frac{81\!\cdots\!91}{68\!\cdots\!48}a^{20}-\frac{42\!\cdots\!37}{86\!\cdots\!56}a^{19}-\frac{10\!\cdots\!15}{68\!\cdots\!48}a^{18}-\frac{13\!\cdots\!83}{17\!\cdots\!12}a^{17}+\frac{59\!\cdots\!53}{68\!\cdots\!48}a^{16}+\frac{11\!\cdots\!47}{17\!\cdots\!12}a^{15}-\frac{16\!\cdots\!89}{68\!\cdots\!48}a^{14}-\frac{68\!\cdots\!67}{17\!\cdots\!12}a^{13}+\frac{23\!\cdots\!33}{68\!\cdots\!48}a^{12}+\frac{85\!\cdots\!65}{86\!\cdots\!56}a^{11}-\frac{13\!\cdots\!49}{68\!\cdots\!48}a^{10}-\frac{18\!\cdots\!61}{17\!\cdots\!12}a^{9}-\frac{46\!\cdots\!29}{68\!\cdots\!48}a^{8}+\frac{59\!\cdots\!51}{17\!\cdots\!12}a^{7}+\frac{54\!\cdots\!09}{68\!\cdots\!48}a^{6}+\frac{14\!\cdots\!11}{17\!\cdots\!12}a^{5}+\frac{68\!\cdots\!05}{43\!\cdots\!78}a^{4}+\frac{36\!\cdots\!13}{86\!\cdots\!56}a^{3}+\frac{27\!\cdots\!49}{43\!\cdots\!78}a^{2}+\frac{99\!\cdots\!36}{21\!\cdots\!89}a+\frac{29\!\cdots\!27}{21\!\cdots\!89}$, $\frac{14\!\cdots\!29}{34\!\cdots\!24}a^{20}-\frac{11\!\cdots\!09}{34\!\cdots\!24}a^{19}-\frac{34\!\cdots\!69}{68\!\cdots\!48}a^{18}+\frac{13\!\cdots\!71}{34\!\cdots\!24}a^{17}+\frac{19\!\cdots\!21}{86\!\cdots\!56}a^{16}-\frac{80\!\cdots\!15}{43\!\cdots\!78}a^{15}-\frac{39\!\cdots\!27}{68\!\cdots\!48}a^{14}+\frac{72\!\cdots\!29}{17\!\cdots\!12}a^{13}+\frac{35\!\cdots\!83}{34\!\cdots\!24}a^{12}-\frac{17\!\cdots\!71}{34\!\cdots\!24}a^{11}-\frac{95\!\cdots\!99}{68\!\cdots\!48}a^{10}+\frac{93\!\cdots\!69}{34\!\cdots\!24}a^{9}+\frac{95\!\cdots\!99}{86\!\cdots\!56}a^{8}+\frac{46\!\cdots\!15}{86\!\cdots\!56}a^{7}-\frac{23\!\cdots\!01}{68\!\cdots\!48}a^{6}-\frac{61\!\cdots\!75}{17\!\cdots\!12}a^{5}-\frac{10\!\cdots\!19}{86\!\cdots\!56}a^{4}-\frac{47\!\cdots\!95}{43\!\cdots\!78}a^{3}-\frac{12\!\cdots\!53}{43\!\cdots\!78}a^{2}-\frac{65\!\cdots\!35}{21\!\cdots\!89}a-\frac{24\!\cdots\!59}{21\!\cdots\!89}$, $\frac{20\!\cdots\!59}{68\!\cdots\!48}a^{20}+\frac{23\!\cdots\!65}{34\!\cdots\!24}a^{19}-\frac{28\!\cdots\!73}{68\!\cdots\!48}a^{18}-\frac{36\!\cdots\!93}{34\!\cdots\!24}a^{17}+\frac{15\!\cdots\!97}{68\!\cdots\!48}a^{16}+\frac{11\!\cdots\!63}{17\!\cdots\!12}a^{15}-\frac{43\!\cdots\!31}{68\!\cdots\!48}a^{14}-\frac{41\!\cdots\!53}{17\!\cdots\!12}a^{13}+\frac{57\!\cdots\!21}{68\!\cdots\!48}a^{12}+\frac{15\!\cdots\!91}{34\!\cdots\!24}a^{11}-\frac{15\!\cdots\!07}{68\!\cdots\!48}a^{10}-\frac{14\!\cdots\!99}{34\!\cdots\!24}a^{9}-\frac{35\!\cdots\!93}{68\!\cdots\!48}a^{8}+\frac{18\!\cdots\!75}{17\!\cdots\!12}a^{7}+\frac{23\!\cdots\!67}{68\!\cdots\!48}a^{6}+\frac{61\!\cdots\!47}{17\!\cdots\!12}a^{5}+\frac{45\!\cdots\!27}{86\!\cdots\!56}a^{4}+\frac{13\!\cdots\!07}{86\!\cdots\!56}a^{3}+\frac{11\!\cdots\!21}{43\!\cdots\!78}a^{2}+\frac{49\!\cdots\!45}{21\!\cdots\!89}a+\frac{16\!\cdots\!91}{21\!\cdots\!89}$, $\frac{10\!\cdots\!15}{68\!\cdots\!48}a^{20}-\frac{80\!\cdots\!03}{68\!\cdots\!48}a^{19}-\frac{12\!\cdots\!69}{68\!\cdots\!48}a^{18}+\frac{48\!\cdots\!17}{34\!\cdots\!24}a^{17}+\frac{58\!\cdots\!55}{68\!\cdots\!48}a^{16}-\frac{45\!\cdots\!89}{68\!\cdots\!48}a^{15}-\frac{15\!\cdots\!53}{68\!\cdots\!48}a^{14}+\frac{32\!\cdots\!76}{21\!\cdots\!89}a^{13}+\frac{27\!\cdots\!37}{68\!\cdots\!48}a^{12}-\frac{12\!\cdots\!93}{68\!\cdots\!48}a^{11}-\frac{36\!\cdots\!31}{68\!\cdots\!48}a^{10}+\frac{32\!\cdots\!97}{34\!\cdots\!24}a^{9}+\frac{29\!\cdots\!81}{68\!\cdots\!48}a^{8}+\frac{26\!\cdots\!97}{68\!\cdots\!48}a^{7}-\frac{89\!\cdots\!83}{68\!\cdots\!48}a^{6}-\frac{24\!\cdots\!49}{17\!\cdots\!12}a^{5}-\frac{40\!\cdots\!09}{86\!\cdots\!56}a^{4}-\frac{34\!\cdots\!25}{86\!\cdots\!56}a^{3}-\frac{24\!\cdots\!29}{21\!\cdots\!89}a^{2}-\frac{25\!\cdots\!11}{21\!\cdots\!89}a-\frac{97\!\cdots\!99}{21\!\cdots\!89}$, $\frac{38\!\cdots\!05}{68\!\cdots\!48}a^{20}-\frac{12\!\cdots\!35}{68\!\cdots\!48}a^{19}-\frac{24\!\cdots\!95}{34\!\cdots\!24}a^{18}+\frac{68\!\cdots\!43}{34\!\cdots\!24}a^{17}+\frac{24\!\cdots\!11}{68\!\cdots\!48}a^{16}-\frac{52\!\cdots\!53}{68\!\cdots\!48}a^{15}-\frac{16\!\cdots\!01}{17\!\cdots\!12}a^{14}+\frac{19\!\cdots\!81}{17\!\cdots\!12}a^{13}+\frac{98\!\cdots\!07}{68\!\cdots\!48}a^{12}-\frac{51\!\cdots\!01}{68\!\cdots\!48}a^{11}-\frac{41\!\cdots\!89}{34\!\cdots\!24}a^{10}-\frac{42\!\cdots\!87}{34\!\cdots\!24}a^{9}+\frac{29\!\cdots\!85}{68\!\cdots\!48}a^{8}+\frac{57\!\cdots\!81}{68\!\cdots\!48}a^{7}-\frac{20\!\cdots\!05}{17\!\cdots\!12}a^{6}-\frac{57\!\cdots\!81}{17\!\cdots\!12}a^{5}+\frac{53\!\cdots\!15}{17\!\cdots\!12}a^{4}+\frac{91\!\cdots\!53}{21\!\cdots\!89}a^{3}-\frac{23\!\cdots\!02}{21\!\cdots\!89}a^{2}-\frac{11\!\cdots\!42}{21\!\cdots\!89}a-\frac{59\!\cdots\!07}{21\!\cdots\!89}$, $\frac{46\!\cdots\!59}{17\!\cdots\!12}a^{20}-\frac{13\!\cdots\!57}{68\!\cdots\!48}a^{19}-\frac{22\!\cdots\!63}{68\!\cdots\!48}a^{18}+\frac{84\!\cdots\!43}{34\!\cdots\!24}a^{17}+\frac{51\!\cdots\!69}{34\!\cdots\!24}a^{16}-\frac{78\!\cdots\!55}{68\!\cdots\!48}a^{15}-\frac{26\!\cdots\!85}{68\!\cdots\!48}a^{14}+\frac{22\!\cdots\!17}{86\!\cdots\!56}a^{13}+\frac{12\!\cdots\!35}{17\!\cdots\!12}a^{12}-\frac{21\!\cdots\!59}{68\!\cdots\!48}a^{11}-\frac{65\!\cdots\!89}{68\!\cdots\!48}a^{10}+\frac{57\!\cdots\!75}{34\!\cdots\!24}a^{9}+\frac{25\!\cdots\!25}{34\!\cdots\!24}a^{8}+\frac{37\!\cdots\!79}{68\!\cdots\!48}a^{7}-\frac{15\!\cdots\!47}{68\!\cdots\!48}a^{6}-\frac{41\!\cdots\!19}{17\!\cdots\!12}a^{5}-\frac{10\!\cdots\!53}{17\!\cdots\!12}a^{4}-\frac{31\!\cdots\!99}{43\!\cdots\!78}a^{3}-\frac{90\!\cdots\!29}{43\!\cdots\!78}a^{2}-\frac{47\!\cdots\!00}{21\!\cdots\!89}a-\frac{18\!\cdots\!87}{21\!\cdots\!89}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 48439163443900000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{15}\cdot(2\pi)^{3}\cdot 48439163443900000000 \cdot 3}{2\cdot\sqrt{283369569577324675950460641547443204115057882490208256}}\cr\approx \mathstrut & 1.10943235678879 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 6*x^20 - 129*x^19 + 738*x^18 + 6841*x^17 - 34182*x^16 - 206917*x^15 + 754770*x^14 + 4078383*x^13 - 7593138*x^12 - 52093363*x^11 + 8626390*x^10 + 365734083*x^9 + 439496302*x^8 - 804532503*x^7 - 2198991242*x^6 - 1696579116*x^5 - 3038803440*x^4 - 11303652912*x^3 - 18939196800*x^2 - 14663981568*x - 4441714880)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 6*x^20 - 129*x^19 + 738*x^18 + 6841*x^17 - 34182*x^16 - 206917*x^15 + 754770*x^14 + 4078383*x^13 - 7593138*x^12 - 52093363*x^11 + 8626390*x^10 + 365734083*x^9 + 439496302*x^8 - 804532503*x^7 - 2198991242*x^6 - 1696579116*x^5 - 3038803440*x^4 - 11303652912*x^3 - 18939196800*x^2 - 14663981568*x - 4441714880, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 6*x^20 - 129*x^19 + 738*x^18 + 6841*x^17 - 34182*x^16 - 206917*x^15 + 754770*x^14 + 4078383*x^13 - 7593138*x^12 - 52093363*x^11 + 8626390*x^10 + 365734083*x^9 + 439496302*x^8 - 804532503*x^7 - 2198991242*x^6 - 1696579116*x^5 - 3038803440*x^4 - 11303652912*x^3 - 18939196800*x^2 - 14663981568*x - 4441714880);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 6*x^20 - 129*x^19 + 738*x^18 + 6841*x^17 - 34182*x^16 - 206917*x^15 + 754770*x^14 + 4078383*x^13 - 7593138*x^12 - 52093363*x^11 + 8626390*x^10 + 365734083*x^9 + 439496302*x^8 - 804532503*x^7 - 2198991242*x^6 - 1696579116*x^5 - 3038803440*x^4 - 11303652912*x^3 - 18939196800*x^2 - 14663981568*x - 4441714880);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^7.F_8:C_6$ (as 21T117):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 734832
The 72 conjugacy class representatives for $C_3^7.F_8:C_6$ are not computed
Character table for $C_3^7.F_8:C_6$ is not computed

Intermediate fields

7.7.1817487424.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 sibling: data not computed
Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.14.0.1}{14} }{,}\,{\href{/padicField/3.7.0.1}{7} }$ ${\href{/padicField/5.9.0.1}{9} }{,}\,{\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.14.0.1}{14} }{,}\,{\href{/padicField/7.7.0.1}{7} }$ ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ R ${\href{/padicField/17.7.0.1}{7} }^{3}$ ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{5}$ ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ ${\href{/padicField/41.9.0.1}{9} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.9.0.1}{9} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.7.6.1$x^{7} + 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
2.14.20.16$x^{14} + 2 x^{13} + 2 x^{12} + 2 x^{10} + 2 x^{9} + 2 x^{7} + 6$$14$$1$$20$14T18$[12/7, 12/7, 12/7, 2]_{7}^{3}$
\(13\) Copy content Toggle raw display 13.3.0.1$x^{3} + 2 x + 11$$1$$3$$0$$C_3$$[\ ]^{3}$
13.3.0.1$x^{3} + 2 x + 11$$1$$3$$0$$C_3$$[\ ]^{3}$
13.3.2.1$x^{3} + 26$$3$$1$$2$$C_3$$[\ ]_{3}$
13.3.0.1$x^{3} + 2 x + 11$$1$$3$$0$$C_3$$[\ ]^{3}$
13.9.0.1$x^{9} + 12 x^{4} + 8 x^{3} + 12 x^{2} + 12 x + 11$$1$$9$$0$$C_9$$[\ ]^{9}$
\(73\) Copy content Toggle raw display 73.3.0.1$x^{3} + 2 x + 68$$1$$3$$0$$C_3$$[\ ]^{3}$
73.3.2.1$x^{3} + 73$$3$$1$$2$$C_3$$[\ ]_{3}$
73.3.2.1$x^{3} + 73$$3$$1$$2$$C_3$$[\ ]_{3}$
73.3.2.1$x^{3} + 73$$3$$1$$2$$C_3$$[\ ]_{3}$
73.9.6.1$x^{9} + 6 x^{7} + 423 x^{6} + 12 x^{5} + 378 x^{4} - 74377 x^{3} + 1692 x^{2} - 65988 x + 2803805$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
\(1699\) Copy content Toggle raw display Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$3$$1$$2$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $9$$1$$9$$0$$C_9$$[\ ]^{9}$
\(19440739\) Copy content Toggle raw display Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$3$$1$$2$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $9$$1$$9$$0$$C_9$$[\ ]^{9}$