Normalized defining polynomial
\( x^{21} - 45 x^{19} - 30 x^{18} + 594 x^{17} + 792 x^{16} - 897 x^{15} - 2322 x^{14} - 17910 x^{13} - 43976 x^{12} - 10098 x^{11} + 92388 x^{10} + 258803 x^{9} + 551340 x^{8} + 841095 x^{7} + 929166 x^{6} + 845100 x^{5} + 656280 x^{4} + 387920 x^{3} + 151200 x^{2} + 33600 x + 3200 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-28145346243034236618000959151522201107893866240000000=-\,2^{14}\cdot 3^{21}\cdot 5^{7}\cdot 71^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $314.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{11} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{40} a^{15} - \frac{1}{10} a^{14} - \frac{1}{40} a^{13} - \frac{1}{20} a^{12} - \frac{1}{20} a^{11} - \frac{2}{5} a^{10} + \frac{3}{8} a^{9} - \frac{7}{20} a^{8} - \frac{1}{4} a^{7} - \frac{2}{5} a^{6} + \frac{7}{20} a^{5} - \frac{1}{10} a^{4} - \frac{13}{40} a^{3} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{320} a^{16} + \frac{1}{160} a^{15} - \frac{17}{320} a^{14} + \frac{1}{32} a^{12} + \frac{23}{80} a^{11} + \frac{11}{64} a^{10} - \frac{17}{80} a^{9} - \frac{59}{160} a^{8} - \frac{9}{80} a^{7} + \frac{7}{32} a^{6} - \frac{7}{20} a^{5} + \frac{3}{320} a^{4} + \frac{73}{160} a^{3} - \frac{9}{64} a^{2} + \frac{1}{16} a + \frac{7}{16}$, $\frac{1}{2560} a^{17} - \frac{21}{2560} a^{15} - \frac{47}{1280} a^{14} + \frac{69}{1280} a^{13} - \frac{3}{64} a^{12} + \frac{767}{2560} a^{11} - \frac{569}{1280} a^{10} + \frac{233}{1280} a^{9} - \frac{87}{320} a^{8} - \frac{37}{256} a^{7} + \frac{113}{640} a^{6} + \frac{931}{2560} a^{5} - \frac{25}{128} a^{4} - \frac{913}{2560} a^{3} - \frac{85}{256} a^{2} - \frac{11}{128} a - \frac{23}{64}$, $\frac{1}{1740800} a^{18} - \frac{1}{10240} a^{17} - \frac{917}{1740800} a^{16} + \frac{2213}{435200} a^{15} + \frac{32059}{870400} a^{14} + \frac{40441}{435200} a^{13} - \frac{20049}{1740800} a^{12} + \frac{96647}{217600} a^{11} + \frac{389763}{870400} a^{10} - \frac{73739}{435200} a^{9} - \frac{193569}{870400} a^{8} - \frac{50001}{217600} a^{7} - \frac{24629}{102400} a^{6} + \frac{45051}{174080} a^{5} - \frac{43829}{348160} a^{4} + \frac{12659}{43520} a^{3} + \frac{1947}{8704} a^{2} + \frac{205}{544} a + \frac{679}{4352}$, $\frac{1}{13926400} a^{19} - \frac{1}{3481600} a^{18} - \frac{1937}{13926400} a^{17} - \frac{1281}{1392640} a^{16} - \frac{16917}{1392640} a^{15} + \frac{100829}{1740800} a^{14} - \frac{79973}{2785280} a^{13} - \frac{689959}{6963200} a^{12} + \frac{227211}{6963200} a^{11} + \frac{91771}{348160} a^{10} - \frac{668197}{6963200} a^{9} + \frac{229931}{3481600} a^{8} + \frac{3018699}{13926400} a^{7} + \frac{157257}{870400} a^{6} + \frac{689679}{2785280} a^{5} + \frac{662557}{1392640} a^{4} + \frac{95473}{348160} a^{3} + \frac{8065}{34816} a^{2} + \frac{7719}{34816} a + \frac{53}{17408}$, $\frac{1}{111411200} a^{20} + \frac{1}{55705600} a^{19} + \frac{23}{111411200} a^{18} - \frac{847}{6963200} a^{17} + \frac{11801}{55705600} a^{16} + \frac{14707}{5570560} a^{15} + \frac{4919799}{111411200} a^{14} - \frac{1308873}{27852800} a^{13} - \frac{2215231}{55705600} a^{12} - \frac{6324241}{27852800} a^{11} + \frac{4929063}{11141120} a^{10} + \frac{3411871}{6963200} a^{9} + \frac{13370451}{111411200} a^{8} + \frac{4489897}{55705600} a^{7} + \frac{789039}{22282240} a^{6} + \frac{430021}{5570560} a^{5} - \frac{794743}{5570560} a^{4} - \frac{37217}{174080} a^{3} + \frac{107469}{278528} a^{2} - \frac{32299}{69632} a - \frac{28625}{69632}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55032853386800000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.20 | $x^{14} + 4 x^{13} - x^{12} - 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 4 x^{4} - 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 71 | Data not computed | ||||||