Normalized defining polynomial
\( x^{21} - 3 x^{20} - 209 x^{19} + 866 x^{18} + 17488 x^{17} - 100813 x^{16} - 699289 x^{15} + 6055386 x^{14} + 9100112 x^{13} - 197774167 x^{12} + 303373804 x^{11} + 3145126908 x^{10} - 13632017727 x^{9} - 6799234698 x^{8} + 179226043197 x^{7} - 434862711589 x^{6} - 215531886603 x^{5} + 3436111182819 x^{4} - 8653636855724 x^{3} + 11225010417085 x^{2} - 7833213610116 x + 2346733148869 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-264052273254588481010531488175866616732437426978816=-\,2^{14}\cdot 107^{3}\cdot 21557^{3}\cdot 597049^{2}\cdot 60696949^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $251.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 107, 21557, 597049, 60696949$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{113468266173483835143762123335978561809166133260400391} a^{20} - \frac{11007675936463178971017226002976623748622705958158693}{113468266173483835143762123335978561809166133260400391} a^{19} + \frac{54721297747176111316654043792693154352489499438242601}{113468266173483835143762123335978561809166133260400391} a^{18} + \frac{54542183747742645600369698120125832520302540692226589}{113468266173483835143762123335978561809166133260400391} a^{17} + \frac{27287308441971934793385314861826184193741386482547662}{113468266173483835143762123335978561809166133260400391} a^{16} - \frac{26198004883350953421275862568631081634763494666807058}{113468266173483835143762123335978561809166133260400391} a^{15} + \frac{6591465890563504691266673289938868762382469149714574}{113468266173483835143762123335978561809166133260400391} a^{14} - \frac{40575534598743676905132887377219257991479661379647877}{113468266173483835143762123335978561809166133260400391} a^{13} - \frac{8165082743577907921351458441088267121299316485242290}{113468266173483835143762123335978561809166133260400391} a^{12} + \frac{25638512064209733341889150445323374230615327617456646}{113468266173483835143762123335978561809166133260400391} a^{11} - \frac{23903236770103711095201236819173743188881964878861769}{113468266173483835143762123335978561809166133260400391} a^{10} - \frac{6835144470943697868955839505451694136849117988088250}{113468266173483835143762123335978561809166133260400391} a^{9} + \frac{7026214297407957959729406049598206577621807286422723}{113468266173483835143762123335978561809166133260400391} a^{8} + \frac{53671358634978063591625655016568854274776736368689332}{113468266173483835143762123335978561809166133260400391} a^{7} - \frac{47307222956426599015002428515687194899457169803203323}{113468266173483835143762123335978561809166133260400391} a^{6} + \frac{29540811923469379623347021989138557127873272271904182}{113468266173483835143762123335978561809166133260400391} a^{5} + \frac{44759930506814184338553644353227188082274165591907137}{113468266173483835143762123335978561809166133260400391} a^{4} - \frac{22555481420832705731566546623148884171716305313730241}{113468266173483835143762123335978561809166133260400391} a^{3} - \frac{17676963363575349409289791861676333375739304571929942}{113468266173483835143762123335978561809166133260400391} a^{2} - \frac{52847940633507330921295966225146067772278199380372314}{113468266173483835143762123335978561809166133260400391} a + \frac{5523792283042427644368459154855900617789802639945689}{113468266173483835143762123335978561809166133260400391}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 262762283957000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 261 conjugacy class representatives for t21n149 are not computed |
| Character table for t21n149 is not computed |
Intermediate fields
| 7.5.2306599.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.34 | $x^{14} - x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{7} + 2 x^{4} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 107 | Data not computed | ||||||
| 21557 | Data not computed | ||||||
| 597049 | Data not computed | ||||||
| 60696949 | Data not computed | ||||||