Normalized defining polynomial
\( x^{21} - 8 x^{20} - 133 x^{19} + 730 x^{18} + 9557 x^{17} - 20774 x^{16} - 408565 x^{15} - 231634 x^{14} + 9621995 x^{13} + 27029686 x^{12} - 96185103 x^{11} - 598120396 x^{10} - 342043949 x^{9} + 4693867170 x^{8} + 13668773237 x^{7} + 3878121300 x^{6} - 56490630556 x^{5} - 147123786832 x^{4} - 185267123790 x^{3} - 132188180172 x^{2} - 51125595528 x - 8334777958 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26259569531882718908527603204728267601456420004848205824=-\,2^{26}\cdot 73^{12}\cdot 1747^{2}\cdot 2366049313^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $435.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 73, 1747, 2366049313$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{20} - \frac{11046222930173230938275243865584549784367501950330211616118250194188426101}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{19} + \frac{3776177436548613914432907254080650108128577585900306857258805210727226819}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{18} - \frac{6318115168084253153585250722727807779528316944550988299528358408599050960}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{17} + \frac{3418198944372008519137227952798084793158834392851003514765115930003191835}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{16} + \frac{4301365603351039529913364200568503922302115048325572799070838217755483746}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{15} - \frac{2457082331745074757302281755995854400918594455679325177814592078088943648}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{14} + \frac{923942823230164952975750799786503062058663560302225297819455542532360355}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{13} - \frac{6188268774901775704794559697320663357176547015302699024280141441482667528}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{12} + \frac{6141022837546603638619045226904663682443636453433121319069187864026644730}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{11} + \frac{1608677875076323668719063692051191461827165544339410822593962162005624385}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{10} + \frac{3263961995764608295374107814428350815528340149056181850534648961677662186}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{9} + \frac{6883370772293883993631021358949816248883692357292366601929398623295156165}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{8} - \frac{10017654110921798097114871161186097976586375546798328333353274018961865813}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{7} + \frac{6232779277580155289509388914115709328850893276086388693945458760838552167}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{6} + \frac{3550093783734911940536761933117297007961127445158720121132342152081721298}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{5} - \frac{2433806466844000600699089857342087617463541960687558710102677650698806323}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{4} - \frac{6999245873336901957685413209491542368723526190785173026279783112390776364}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{3} + \frac{5131713004401156737040963620450474327716749140214592766665868668840178710}{22661422398999528308076486325139795645820696252811413343948420976002391101} a^{2} - \frac{877971243265597497101649387171185412377229244916983783414087504226387699}{22661422398999528308076486325139795645820696252811413343948420976002391101} a - \frac{3373610522050265623099403213667871817487575601818740997614706660701914905}{22661422398999528308076486325139795645820696252811413343948420976002391101}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 350038202896000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 734832 |
| The 72 conjugacy class representatives for t21n117 are not computed |
| Character table for t21n117 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.20.9 | $x^{14} + 2 x^{13} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{4} + 2$ | $14$ | $1$ | $20$ | 14T18 | $[10/7, 10/7, 10/7, 2]_{7}^{3}$ | |
| 73 | Data not computed | ||||||
| 1747 | Data not computed | ||||||
| 2366049313 | Data not computed | ||||||