Normalized defining polynomial
\( x^{21} - 10 x^{20} - 137 x^{19} + 1872 x^{18} + 3512 x^{17} - 125638 x^{16} + 254464 x^{15} + 3804068 x^{14} - 18436401 x^{13} - 41021470 x^{12} + 471129383 x^{11} - 504783236 x^{10} - 5179107104 x^{9} + 17759404554 x^{8} + 7828934422 x^{7} - 152839367696 x^{6} + 283190814248 x^{5} + 156238042640 x^{4} - 1431442633860 x^{3} + 2489193126240 x^{2} - 2022049207736 x + 669652484632 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-248963880921721405280252120945881577616987438186496=-\,2^{22}\cdot 19^{2}\cdot 37^{4}\cdot 4129^{6}\cdot 4207717^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $251.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37, 4129, 4207717$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{28} a^{19} + \frac{1}{28} a^{18} + \frac{3}{28} a^{17} - \frac{3}{28} a^{16} + \frac{1}{14} a^{15} + \frac{1}{7} a^{14} - \frac{3}{14} a^{13} + \frac{1}{7} a^{12} + \frac{1}{28} a^{11} - \frac{5}{28} a^{10} + \frac{1}{28} a^{9} - \frac{3}{28} a^{8} - \frac{3}{7} a^{7} - \frac{3}{7} a^{6} - \frac{3}{14} a^{5} + \frac{1}{14} a^{4} - \frac{1}{7} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7}$, $\frac{1}{378648032978315631232826752575838877893931889098476652551917620327937009119870404} a^{20} - \frac{3179665264875224755440606770420043501008762669718789813680544174172923251002947}{189324016489157815616413376287919438946965944549238326275958810163968504559935202} a^{19} - \frac{15869506289158222837265530239480763663408609618996387317236770781749696322142145}{378648032978315631232826752575838877893931889098476652551917620327937009119870404} a^{18} - \frac{33756937687904304857577681562011914702575770706524525742873506409370241517653775}{189324016489157815616413376287919438946965944549238326275958810163968504559935202} a^{17} + \frac{20117323380468334998368930471238499379554220193743829679274985294009392714432722}{94662008244578907808206688143959719473482972274619163137979405081984252279967601} a^{16} + \frac{3155975536659724565893139679208332237531298887055619841777744125156756417275594}{13523144034939843972600955449137102781926138896374166162568486440283464611423943} a^{15} - \frac{905453834852643482594625419102511001072569010466406276808581646422706768666189}{13523144034939843972600955449137102781926138896374166162568486440283464611423943} a^{14} + \frac{8549037146243614490901701552135968348616459341355137853170614977269052969716611}{94662008244578907808206688143959719473482972274619163137979405081984252279967601} a^{13} + \frac{6396064731677898629012373942838262362720643458307784794694132849879169536508229}{54092576139759375890403821796548411127704555585496664650273945761133858445695772} a^{12} + \frac{462686100670807186602171304303404940991694154591634007219634462392177873467876}{13523144034939843972600955449137102781926138896374166162568486440283464611423943} a^{11} - \frac{80903517321961166323108755554207525848405091598343699296254724099924006762085569}{378648032978315631232826752575838877893931889098476652551917620327937009119870404} a^{10} - \frac{40718280014184587753535079814000180172205001625138296066459905302214901936213033}{94662008244578907808206688143959719473482972274619163137979405081984252279967601} a^{9} + \frac{44539155648377402565718787490092615697461759606017771997279975090217343273636638}{94662008244578907808206688143959719473482972274619163137979405081984252279967601} a^{8} - \frac{3084336060297885248451638428443790886056926383444763130809754358677865308540971}{189324016489157815616413376287919438946965944549238326275958810163968504559935202} a^{7} + \frac{7103975987619518861216104347490233962400913518350826478286224364100841205419255}{189324016489157815616413376287919438946965944549238326275958810163968504559935202} a^{6} + \frac{11613961854529439298985956872534622367951037848153998177884867871170870605988571}{27046288069879687945201910898274205563852277792748332325136972880566929222847886} a^{5} - \frac{22576338958597372834162323276497911479154819966269559141692981839152837579849883}{94662008244578907808206688143959719473482972274619163137979405081984252279967601} a^{4} + \frac{13890691949424543354819216159446955488293928669779526513492656721705784675633507}{94662008244578907808206688143959719473482972274619163137979405081984252279967601} a^{3} - \frac{15958434960716046933408767682021262989346682680865426696447990663539252150480688}{94662008244578907808206688143959719473482972274619163137979405081984252279967601} a^{2} - \frac{25633692970935118733009505675474633301527156032684747788437816075449865134283797}{94662008244578907808206688143959719473482972274619163137979405081984252279967601} a - \frac{46083044541489085860012786917429589406128340004900867731512430718174922192534741}{94662008244578907808206688143959719473482972274619163137979405081984252279967601}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6828490345850000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 120 conjugacy class representatives for t21n136 are not computed |
| Character table for t21n136 is not computed |
Intermediate fields
| 7.7.1091113024.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | R | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | $21$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.4.4.5 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.6.4.3 | $x^{6} + 333 x^{3} + 34225$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 37.12.0.1 | $x^{12} - x + 15$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 4129 | Data not computed | ||||||
| 4207717 | Data not computed | ||||||