Normalized defining polynomial
\( x^{21} - 42 x^{19} - 28 x^{18} + 108 x^{17} + 144 x^{16} + 10470 x^{15} + 20844 x^{14} - 34056 x^{13} - 124784 x^{12} - 741690 x^{11} - 2102892 x^{10} - 1453054 x^{9} + 3319272 x^{8} + 10472130 x^{7} + 19267908 x^{6} + 27279720 x^{5} + 27096912 x^{4} + 17500768 x^{3} + 6955200 x^{2} + 1545600 x + 147200 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2435730551244745508335671328116066872049480499200=-\,2^{32}\cdot 3^{21}\cdot 5^{2}\cdot 23^{2}\cdot 73^{12}\cdot 179\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $201.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 23, 73, 179$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} + \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} + \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} + \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} - \frac{1}{81} a^{9} - \frac{1}{27} a^{6} + \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} - \frac{1}{81} a^{10} - \frac{1}{27} a^{7} + \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{162} a^{14} + \frac{1}{81} a^{11} + \frac{1}{27} a^{8} - \frac{11}{81} a^{5} - \frac{34}{81} a^{2}$, $\frac{1}{1944} a^{15} - \frac{1}{324} a^{13} + \frac{1}{486} a^{12} - \frac{1}{54} a^{11} + \frac{1}{81} a^{10} - \frac{13}{972} a^{9} - \frac{1}{18} a^{8} + \frac{1}{27} a^{7} - \frac{8}{243} a^{6} - \frac{1}{12} a^{5} + \frac{11}{162} a^{4} + \frac{133}{972} a^{3} + \frac{11}{27} a^{2} - \frac{37}{324} a + \frac{137}{486}$, $\frac{1}{15552} a^{16} + \frac{1}{7776} a^{15} + \frac{1}{864} a^{14} - \frac{7}{1944} a^{13} - \frac{1}{3888} a^{12} - \frac{1}{72} a^{11} - \frac{37}{7776} a^{10} - \frac{5}{1944} a^{9} - \frac{1}{24} a^{8} + \frac{7}{486} a^{7} - \frac{397}{7776} a^{6} - \frac{7}{54} a^{5} + \frac{361}{7776} a^{4} - \frac{341}{3888} a^{3} + \frac{143}{288} a^{2} + \frac{475}{1944} a - \frac{211}{1944}$, $\frac{1}{124416} a^{17} - \frac{1}{6912} a^{15} - \frac{23}{31104} a^{14} - \frac{23}{10368} a^{13} + \frac{13}{2592} a^{12} - \frac{685}{62208} a^{11} - \frac{7}{10368} a^{10} - \frac{77}{5184} a^{9} + \frac{419}{7776} a^{8} - \frac{5}{6912} a^{7} - \frac{83}{3456} a^{6} + \frac{7561}{62208} a^{5} + \frac{739}{5184} a^{4} - \frac{317}{20736} a^{3} - \frac{2479}{31104} a^{2} - \frac{1915}{5184} a - \frac{743}{2592}$, $\frac{1}{2985984} a^{18} + \frac{1}{497664} a^{17} - \frac{1}{165888} a^{16} + \frac{13}{124416} a^{15} + \frac{443}{248832} a^{14} - \frac{83}{13824} a^{13} + \frac{25}{55296} a^{12} + \frac{467}{62208} a^{11} + \frac{101}{20736} a^{10} - \frac{1465}{93312} a^{9} - \frac{26335}{497664} a^{8} - \frac{689}{41472} a^{7} + \frac{16343}{497664} a^{6} - \frac{2225}{248832} a^{5} + \frac{5491}{55296} a^{4} + \frac{211}{20736} a^{3} + \frac{1387}{62208} a^{2} + \frac{467}{2592} a - \frac{41215}{93312}$, $\frac{1}{23887872} a^{19} - \frac{1}{5971968} a^{18} - \frac{13}{3981312} a^{17} + \frac{41}{1990656} a^{16} + \frac{61}{663552} a^{15} - \frac{713}{497664} a^{14} + \frac{1843}{1327104} a^{13} - \frac{8473}{1990656} a^{12} + \frac{8689}{497664} a^{11} - \frac{701}{373248} a^{10} - \frac{65789}{11943936} a^{9} + \frac{63029}{1990656} a^{8} - \frac{48433}{3981312} a^{7} - \frac{2387}{165888} a^{6} + \frac{511711}{3981312} a^{5} + \frac{27023}{663552} a^{4} - \frac{37199}{497664} a^{3} + \frac{4813}{248832} a^{2} + \frac{349385}{746496} a + \frac{181883}{373248}$, $\frac{1}{955514880} a^{20} + \frac{1}{95551488} a^{19} + \frac{29}{477757440} a^{18} + \frac{23}{39813120} a^{17} + \frac{469}{79626240} a^{16} + \frac{2351}{39813120} a^{15} + \frac{19157}{31850496} a^{14} + \frac{240331}{39813120} a^{13} - \frac{55709}{39813120} a^{12} + \frac{315563}{29859840} a^{11} - \frac{592985}{95551488} a^{10} - \frac{151187}{59719680} a^{9} - \frac{8205989}{159252480} a^{8} + \frac{3483461}{79626240} a^{7} - \frac{1052509}{31850496} a^{6} + \frac{2392067}{39813120} a^{5} - \frac{1181687}{7962624} a^{4} - \frac{243007}{2488320} a^{3} - \frac{1703221}{29859840} a^{2} - \frac{343079}{1492992} a - \frac{258071}{1492992}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 432606800132000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 183 conjugacy class representatives for t21n137 are not computed |
| Character table for t21n137 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $21$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.26.25 | $x^{14} - 2 x^{13} + 4 x^{10} + 4 x^{9} + 2 x^{8} + 4 x^{7} + 2 x^{6} + 2 x^{4} + 4 x - 2$ | $14$ | $1$ | $26$ | 14T44 | $[2, 18/7, 18/7, 18/7, 20/7, 20/7, 20/7]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $23$ | 23.3.2.1 | $x^{3} - 23$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 73 | Data not computed | ||||||
| 179 | Data not computed | ||||||