Normalized defining polynomial
\( x^{21} - 24 x^{19} - 16 x^{18} + 153 x^{17} + 204 x^{16} + 176 x^{15} + 216 x^{14} - 3420 x^{13} - 9472 x^{12} - 1485 x^{11} + 22506 x^{10} + 34207 x^{9} + 20844 x^{8} + 873 x^{7} - 13470 x^{6} - 22572 x^{5} - 23256 x^{4} - 15184 x^{3} - 6048 x^{2} - 1344 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-237714117824906601657941050896630528000000=-\,2^{14}\cdot 3^{21}\cdot 5^{6}\cdot 6679^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 6679$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} + \frac{1}{8} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{1}{16} a^{14} - \frac{1}{8} a^{13} - \frac{7}{64} a^{12} - \frac{1}{32} a^{11} + \frac{1}{16} a^{10} + \frac{5}{16} a^{8} - \frac{3}{8} a^{7} - \frac{29}{64} a^{6} - \frac{1}{4} a^{5} + \frac{7}{64} a^{4} - \frac{11}{32} a^{3} - \frac{11}{64} a^{2} + \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} - \frac{5}{32} a^{14} + \frac{201}{512} a^{13} - \frac{45}{128} a^{12} - \frac{15}{64} a^{11} + \frac{23}{64} a^{10} + \frac{5}{128} a^{9} + \frac{1}{4} a^{8} - \frac{109}{512} a^{7} - \frac{75}{256} a^{6} - \frac{217}{512} a^{5} + \frac{39}{128} a^{4} + \frac{33}{512} a^{3} + \frac{17}{256} a^{2} - \frac{49}{128} a - \frac{21}{64}$, $\frac{1}{28672} a^{18} + \frac{1}{2048} a^{17} + \frac{1}{224} a^{16} - \frac{53}{1792} a^{15} + \frac{11881}{28672} a^{14} + \frac{2085}{14336} a^{13} + \frac{355}{1792} a^{12} + \frac{1125}{3584} a^{11} - \frac{3447}{7168} a^{10} + \frac{1203}{3584} a^{9} - \frac{2027}{4096} a^{8} - \frac{2083}{7168} a^{7} - \frac{2957}{28672} a^{6} - \frac{3233}{14336} a^{5} - \frac{2007}{28672} a^{4} - \frac{785}{1792} a^{3} - \frac{13}{3584} a^{2} - \frac{27}{896} a - \frac{307}{1792}$, $\frac{1}{229376} a^{19} - \frac{1}{57344} a^{18} - \frac{31}{57344} a^{17} + \frac{27}{14336} a^{16} + \frac{5641}{229376} a^{15} + \frac{11421}{28672} a^{14} + \frac{25663}{57344} a^{13} + \frac{1983}{4096} a^{12} - \frac{9899}{57344} a^{11} - \frac{2703}{14336} a^{10} - \frac{72733}{229376} a^{9} + \frac{1679}{114688} a^{8} + \frac{89675}{229376} a^{7} - \frac{2045}{4096} a^{6} + \frac{57037}{229376} a^{5} + \frac{52999}{114688} a^{4} - \frac{10281}{28672} a^{3} + \frac{425}{2048} a^{2} - \frac{545}{2048} a + \frac{1419}{7168}$, $\frac{1}{1835008} a^{20} + \frac{1}{917504} a^{19} - \frac{5}{458752} a^{18} + \frac{185}{229376} a^{17} - \frac{4055}{1835008} a^{16} - \frac{20337}{917504} a^{15} - \frac{1861}{458752} a^{14} - \frac{35893}{114688} a^{13} - \frac{127487}{458752} a^{12} - \frac{27295}{229376} a^{11} + \frac{770115}{1835008} a^{10} - \frac{7417}{114688} a^{9} - \frac{96311}{262144} a^{8} - \frac{92107}{917504} a^{7} - \frac{865219}{1835008} a^{6} - \frac{29935}{65536} a^{5} + \frac{24035}{458752} a^{4} + \frac{2857}{28672} a^{3} - \frac{10093}{114688} a^{2} - \frac{1731}{4096} a - \frac{191}{28672}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20396068390900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.7.1115226025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.26 | $x^{14} + 2 x^{13} + x^{12} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{3} + 2 x - 1$ | $2$ | $7$ | $14$ | 14T9 | $[2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 6679 | Data not computed | ||||||