Normalized defining polynomial
\( x^{21} - 4 x^{20} - 135 x^{19} + 447 x^{18} + 7426 x^{17} - 14742 x^{16} - 235889 x^{15} + 81863 x^{14} + 4535217 x^{13} + 6003126 x^{12} - 45995423 x^{11} - 152176849 x^{10} + 82861724 x^{9} + 1302489123 x^{8} + 2491180274 x^{7} - 865406655 x^{6} - 12974841396 x^{5} - 29235206700 x^{4} - 36570332305 x^{3} - 28144706275 x^{2} - 12639229484 x - 2567394257 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-206999357923580597519925622120420920952650317824=-\,2^{14}\cdot 107^{3}\cdot 331^{2}\cdot 21557^{3}\cdot 31033^{2}\cdot 98779^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $179.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 107, 331, 21557, 31033, 98779$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{1167755766131189904536539888921649294833421395461833431} a^{20} - \frac{527429531469982377245096208295513979055217466153393022}{1167755766131189904536539888921649294833421395461833431} a^{19} - \frac{493786022521570427258919100139070089448137137692488321}{1167755766131189904536539888921649294833421395461833431} a^{18} + \frac{85674493786621096445427689507182292460418234889523114}{1167755766131189904536539888921649294833421395461833431} a^{17} + \frac{34751855442074381090522583969594320122282577448663860}{1167755766131189904536539888921649294833421395461833431} a^{16} + \frac{555702551246104339987869864524616720821296022573900087}{1167755766131189904536539888921649294833421395461833431} a^{15} - \frac{254819396390458844230398116047630062227450627981144914}{1167755766131189904536539888921649294833421395461833431} a^{14} - \frac{456258145447442074592080122796241299051951603029979644}{1167755766131189904536539888921649294833421395461833431} a^{13} + \frac{181911334747984222499966251261728702020207188210880937}{1167755766131189904536539888921649294833421395461833431} a^{12} + \frac{524788072830111963597382018380541532778653917687908536}{1167755766131189904536539888921649294833421395461833431} a^{11} + \frac{201979103709835766534429443226708410806547093305275075}{1167755766131189904536539888921649294833421395461833431} a^{10} - \frac{396648973268607640746629298861783365272463106709429326}{1167755766131189904536539888921649294833421395461833431} a^{9} - \frac{204908751027800856653752041840075439628396124391169549}{1167755766131189904536539888921649294833421395461833431} a^{8} + \frac{235458639832485923913351908116471190868176686439623213}{1167755766131189904536539888921649294833421395461833431} a^{7} - \frac{374693499778511642236051807746605990651814418585281584}{1167755766131189904536539888921649294833421395461833431} a^{6} + \frac{334452561543827797249376326987276769486158495056695871}{1167755766131189904536539888921649294833421395461833431} a^{5} - \frac{428453963190219250668637960113189799351333283542305359}{1167755766131189904536539888921649294833421395461833431} a^{4} - \frac{479909013994123244861933687466462823855891156788883003}{1167755766131189904536539888921649294833421395461833431} a^{3} - \frac{342156355173983417423505989192240309859509867111084405}{1167755766131189904536539888921649294833421395461833431} a^{2} - \frac{200691680915724733863755435070127729021747171560072806}{1167755766131189904536539888921649294833421395461833431} a - \frac{207600208303909398762433708458129463060527212341402880}{1167755766131189904536539888921649294833421395461833431}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7050261971610000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 261 conjugacy class representatives for t21n149 are not computed |
| Character table for t21n149 is not computed |
Intermediate fields
| 7.5.2306599.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.34 | $x^{14} - x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{7} + 2 x^{4} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 107.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 107.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 331 | Data not computed | ||||||
| 21557 | Data not computed | ||||||
| 31033 | Data not computed | ||||||
| 98779 | Data not computed | ||||||