Normalized defining polynomial
\( x^{21} - 21 x^{19} - 4 x^{18} + 189 x^{17} + 72 x^{16} - 1045 x^{15} - 540 x^{14} + 4335 x^{13} + 1944 x^{12} - 14103 x^{11} - 2268 x^{10} + 32519 x^{9} - 5832 x^{8} - 46431 x^{7} + 21084 x^{6} + 35532 x^{5} - 21528 x^{4} - 11616 x^{3} + 6048 x^{2} + 1152 x - 512 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-199772041324466833510039955353950498075672576=-\,2^{15}\cdot 3^{21}\cdot 2029^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 2029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{7} + \frac{1}{16} a^{6} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{12} + \frac{1}{16} a^{8} + \frac{5}{32} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{13} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{7}{32} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{10} - \frac{1}{8} a^{8} + \frac{1}{32} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} + \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{64} a^{7} - \frac{1}{16} a^{6} + \frac{15}{64} a^{5} - \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{14} - \frac{1}{32} a^{10} + \frac{1}{64} a^{8} - \frac{1}{8} a^{7} + \frac{3}{64} a^{6} + \frac{7}{32} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{17} - \frac{1}{128} a^{16} - \frac{1}{128} a^{15} - \frac{1}{128} a^{14} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{1}{128} a^{9} + \frac{3}{128} a^{8} - \frac{5}{128} a^{7} - \frac{13}{128} a^{6} + \frac{15}{64} a^{5} - \frac{1}{4} a^{4} - \frac{3}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{18} - \frac{1}{128} a^{16} - \frac{1}{128} a^{15} - \frac{1}{256} a^{14} - \frac{1}{128} a^{13} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{256} a^{10} + \frac{1}{64} a^{9} + \frac{15}{128} a^{8} - \frac{9}{128} a^{7} - \frac{15}{256} a^{6} + \frac{31}{128} a^{5} - \frac{3}{32} a^{4} + \frac{3}{32} a^{3} + \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{256} a^{19} + \frac{1}{256} a^{15} + \frac{3}{256} a^{11} + \frac{1}{32} a^{10} + \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{5}{256} a^{7} - \frac{1}{32} a^{6} + \frac{7}{32} a^{5} + \frac{7}{32} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{512} a^{20} - \frac{1}{512} a^{19} - \frac{3}{512} a^{16} + \frac{3}{512} a^{15} + \frac{1}{128} a^{14} - \frac{1}{128} a^{13} - \frac{5}{512} a^{12} + \frac{13}{512} a^{11} - \frac{3}{64} a^{10} + \frac{3}{64} a^{9} - \frac{1}{512} a^{8} + \frac{17}{512} a^{7} + \frac{13}{128} a^{6} - \frac{5}{128} a^{5} - \frac{15}{64} a^{4} + \frac{3}{16} a^{3} + \frac{3}{16} a^{2} - \frac{1}{4} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13402669848900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3919104 |
| The 288 conjugacy class representatives for t21n131 are not computed |
| Character table for t21n131 is not computed |
Intermediate fields
| 7.7.8353070389.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | $21$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 3 | Data not computed | ||||||
| 2029 | Data not computed | ||||||