Normalized defining polynomial
\( x^{21} - 6 x^{20} - 203 x^{19} + 838 x^{18} + 14852 x^{17} - 59663 x^{16} - 530509 x^{15} + 2576288 x^{14} + 9166942 x^{13} - 66398244 x^{12} - 28436177 x^{11} + 936461376 x^{10} - 1582339958 x^{9} - 5167321863 x^{8} + 23210975798 x^{7} - 20434819891 x^{6} - 69789330828 x^{5} + 247971929908 x^{4} - 375341626400 x^{3} + 321030524262 x^{2} - 151939714933 x + 31214514281 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-199590046918721268199019961542607044275952072765726408704=-\,2^{14}\cdot 29^{18}\cdot 7608122372761^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $479.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29, 7608122372761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17} a^{15} + \frac{2}{17} a^{14} - \frac{6}{17} a^{13} + \frac{3}{17} a^{12} + \frac{8}{17} a^{10} + \frac{8}{17} a^{8} + \frac{5}{17} a^{7} + \frac{3}{17} a^{6} + \frac{6}{17} a^{5} - \frac{4}{17} a^{3} - \frac{3}{17} a^{2} + \frac{8}{17} a - \frac{8}{17}$, $\frac{1}{17} a^{16} + \frac{7}{17} a^{14} - \frac{2}{17} a^{13} - \frac{6}{17} a^{12} + \frac{8}{17} a^{11} + \frac{1}{17} a^{10} + \frac{8}{17} a^{9} + \frac{6}{17} a^{8} - \frac{7}{17} a^{7} + \frac{5}{17} a^{5} - \frac{4}{17} a^{4} + \frac{5}{17} a^{3} - \frac{3}{17} a^{2} - \frac{7}{17} a - \frac{1}{17}$, $\frac{1}{17} a^{17} + \frac{1}{17} a^{14} + \frac{2}{17} a^{13} + \frac{4}{17} a^{12} + \frac{1}{17} a^{11} + \frac{3}{17} a^{10} + \frac{6}{17} a^{9} + \frac{5}{17} a^{8} - \frac{1}{17} a^{7} + \frac{1}{17} a^{6} + \frac{5}{17} a^{5} + \frac{5}{17} a^{4} + \frac{8}{17} a^{3} - \frac{3}{17} a^{2} - \frac{6}{17} a + \frac{5}{17}$, $\frac{1}{17} a^{18} - \frac{7}{17} a^{13} - \frac{2}{17} a^{12} + \frac{3}{17} a^{11} - \frac{2}{17} a^{10} + \frac{5}{17} a^{9} + \frac{8}{17} a^{8} - \frac{4}{17} a^{7} + \frac{2}{17} a^{6} - \frac{1}{17} a^{5} + \frac{8}{17} a^{4} + \frac{1}{17} a^{3} - \frac{3}{17} a^{2} - \frac{3}{17} a + \frac{8}{17}$, $\frac{1}{17} a^{19} - \frac{7}{17} a^{14} - \frac{2}{17} a^{13} + \frac{3}{17} a^{12} - \frac{2}{17} a^{11} + \frac{5}{17} a^{10} + \frac{8}{17} a^{9} - \frac{4}{17} a^{8} + \frac{2}{17} a^{7} - \frac{1}{17} a^{6} + \frac{8}{17} a^{5} + \frac{1}{17} a^{4} - \frac{3}{17} a^{3} - \frac{3}{17} a^{2} + \frac{8}{17} a$, $\frac{1}{4917704283796586571820659681046234890526490139561457368233} a^{20} - \frac{54415845691767585441644431877177769790568665849398699204}{4917704283796586571820659681046234890526490139561457368233} a^{19} - \frac{120064759823475449502568824829257372009068014457334366636}{4917704283796586571820659681046234890526490139561457368233} a^{18} - \frac{76243172364946082442256512926052640351970335172320713800}{4917704283796586571820659681046234890526490139561457368233} a^{17} - \frac{115196711305122318332886841826213996993170053055402163481}{4917704283796586571820659681046234890526490139561457368233} a^{16} + \frac{65778046845864623165176160259775344592073610695545823857}{4917704283796586571820659681046234890526490139561457368233} a^{15} - \frac{2111112094268384213213463559917798363058412747653420072361}{4917704283796586571820659681046234890526490139561457368233} a^{14} - \frac{68521413490884719634702010028856626616200466333070162849}{289276722576269798342391745943896170030970008209497492249} a^{13} + \frac{1358718540616928595435829811995602995913251561568649342743}{4917704283796586571820659681046234890526490139561457368233} a^{12} + \frac{1384971959222029898942297321675609486495349072691026685962}{4917704283796586571820659681046234890526490139561457368233} a^{11} + \frac{768860025219128301576076410485647776355388460029972424535}{4917704283796586571820659681046234890526490139561457368233} a^{10} + \frac{731201674875522778461093298207346631978775218441736645202}{4917704283796586571820659681046234890526490139561457368233} a^{9} + \frac{753975524925235683691127270646687161104634715759433403088}{4917704283796586571820659681046234890526490139561457368233} a^{8} - \frac{1623587040578744545189386323135531632721011728740474264502}{4917704283796586571820659681046234890526490139561457368233} a^{7} - \frac{1360612463923397279923276366977127171474956637753043729998}{4917704283796586571820659681046234890526490139561457368233} a^{6} - \frac{1769839967589965027767566075452695720218598732354481898656}{4917704283796586571820659681046234890526490139561457368233} a^{5} + \frac{1899489624346673139218262734567033347286399324872665972973}{4917704283796586571820659681046234890526490139561457368233} a^{4} - \frac{439933816827374117512602584941251733968630870860238646028}{4917704283796586571820659681046234890526490139561457368233} a^{3} + \frac{1445400378122647592500606310813766901551832459599375602009}{4917704283796586571820659681046234890526490139561457368233} a^{2} + \frac{436973983617802635903957718405742408294501559760355672334}{4917704283796586571820659681046234890526490139561457368233} a + \frac{136227526577019047582994782213809293680199441781108145}{828873130591030940809145403850705358254928390285093101}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 236029735693000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 244944 |
| The 72 conjugacy class representatives for t21n112 are not computed |
| Character table for t21n112 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ | |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 7608122372761 | Data not computed | ||||||