Normalized defining polynomial
\( x^{21} - 24 x^{19} - 16 x^{18} + 135 x^{17} + 180 x^{16} + 573 x^{15} + 1026 x^{14} - 4500 x^{13} - 13672 x^{12} - 13581 x^{11} - 5334 x^{10} + 43067 x^{9} + 172764 x^{8} + 247614 x^{7} + 71204 x^{6} - 239976 x^{5} - 374256 x^{4} - 268384 x^{3} - 108864 x^{2} - 24192 x - 2304 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14817338777167503854605746292412246557782097920=-\,2^{14}\cdot 3^{23}\cdot 5\cdot 7^{12}\cdot 173^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $157.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{13} - \frac{1}{8} a^{11} - \frac{1}{2} a^{10} + \frac{1}{8} a^{9} + \frac{1}{4} a^{8} + \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{1}{16} a^{14} - \frac{1}{8} a^{13} - \frac{25}{64} a^{12} + \frac{1}{32} a^{11} - \frac{23}{64} a^{10} - \frac{3}{16} a^{9} + \frac{7}{16} a^{8} + \frac{3}{64} a^{6} + \frac{1}{4} a^{5} - \frac{29}{64} a^{4} + \frac{9}{32} a^{3} - \frac{3}{32} a^{2} + \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{512} a^{17} - \frac{5}{32} a^{14} + \frac{183}{512} a^{13} - \frac{51}{128} a^{12} - \frac{155}{512} a^{11} + \frac{17}{256} a^{10} - \frac{51}{128} a^{9} + \frac{9}{64} a^{8} + \frac{67}{512} a^{7} - \frac{91}{256} a^{6} + \frac{67}{512} a^{5} + \frac{35}{128} a^{4} - \frac{53}{256} a^{3} + \frac{25}{128} a^{2} + \frac{7}{64} a + \frac{3}{32}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} - \frac{5}{256} a^{15} + \frac{343}{4096} a^{14} + \frac{995}{2048} a^{13} + \frac{1277}{4096} a^{12} + \frac{171}{512} a^{11} - \frac{49}{256} a^{10} + \frac{31}{128} a^{9} + \frac{1459}{4096} a^{8} + \frac{433}{1024} a^{7} - \frac{81}{4096} a^{6} + \frac{259}{2048} a^{5} - \frac{705}{2048} a^{4} + \frac{39}{512} a^{3} + \frac{87}{256} a^{2} - \frac{17}{64} a - \frac{3}{128}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{1}{8192} a^{17} - \frac{5}{2048} a^{16} + \frac{503}{32768} a^{15} - \frac{349}{4096} a^{14} - \frac{14991}{32768} a^{13} - \frac{2641}{16384} a^{12} + \frac{9}{512} a^{11} - \frac{27}{64} a^{10} + \frac{15859}{32768} a^{9} - \frac{2641}{16384} a^{8} - \frac{7641}{32768} a^{7} + \frac{1109}{4096} a^{6} - \frac{5319}{16384} a^{5} - \frac{2289}{8192} a^{4} - \frac{13}{128} a^{3} - \frac{377}{1024} a^{2} + \frac{65}{1024} a + \frac{3}{512}$, $\frac{1}{786432} a^{20} - \frac{1}{131072} a^{19} + \frac{1}{65536} a^{18} - \frac{11}{98304} a^{17} + \frac{221}{262144} a^{16} - \frac{633}{131072} a^{15} + \frac{7787}{262144} a^{14} - \frac{11595}{65536} a^{13} + \frac{3659}{65536} a^{12} - \frac{2165}{6144} a^{11} + \frac{25425}{262144} a^{10} + \frac{13477}{32768} a^{9} - \frac{324757}{786432} a^{8} - \frac{39665}{131072} a^{7} + \frac{17115}{131072} a^{6} + \frac{30187}{98304} a^{5} - \frac{4837}{32768} a^{4} + \frac{3357}{8192} a^{3} + \frac{4915}{24576} a^{2} - \frac{693}{2048} a - \frac{1}{2048}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73405955830000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.16 | $x^{12} - 16 x^{10} - 23 x^{8} + 24 x^{6} - 29 x^{4} - 8 x^{2} - 13$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 173 | Data not computed | ||||||