Normalized defining polynomial
\( x^{21} - 27 x^{19} - 18 x^{18} + 171 x^{17} + 228 x^{16} + 1129 x^{15} + 2106 x^{14} - 14553 x^{13} - 42240 x^{12} + 16497 x^{11} + 177918 x^{10} + 192220 x^{9} - 93312 x^{8} - 395361 x^{7} - 420282 x^{6} - 259956 x^{5} - 121032 x^{4} - 51248 x^{3} - 18144 x^{2} - 4032 x - 384 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1315969325517029136527144953243469517078528=-\,2^{14}\cdot 3^{19}\cdot 1601^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 1601$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{8} a^{11} - \frac{3}{8} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{1}{64} a^{14} - \frac{1}{4} a^{13} - \frac{13}{64} a^{12} + \frac{13}{32} a^{11} + \frac{21}{64} a^{10} - \frac{7}{16} a^{9} + \frac{23}{64} a^{8} + \frac{15}{32} a^{7} + \frac{5}{64} a^{6} - \frac{3}{8} a^{5} + \frac{5}{16} a^{4} - \frac{1}{8} a^{3} + \frac{31}{64} a^{2} - \frac{7}{16} a - \frac{1}{16}$, $\frac{1}{512} a^{17} - \frac{3}{512} a^{15} - \frac{41}{256} a^{14} + \frac{147}{512} a^{13} - \frac{3}{128} a^{12} + \frac{33}{512} a^{11} + \frac{125}{256} a^{10} + \frac{207}{512} a^{9} - \frac{1}{32} a^{8} - \frac{119}{512} a^{7} + \frac{79}{256} a^{6} + \frac{33}{128} a^{5} - \frac{15}{32} a^{4} + \frac{47}{512} a^{3} + \frac{51}{256} a^{2} - \frac{19}{128} a + \frac{1}{64}$, $\frac{1}{315392} a^{18} - \frac{1}{2048} a^{17} + \frac{1853}{315392} a^{16} + \frac{4223}{78848} a^{15} - \frac{52953}{315392} a^{14} + \frac{59331}{157696} a^{13} + \frac{61209}{315392} a^{12} + \frac{877}{9856} a^{11} + \frac{9899}{315392} a^{10} - \frac{5661}{22528} a^{9} - \frac{21361}{45056} a^{8} - \frac{2329}{7168} a^{7} - \frac{1263}{5632} a^{6} - \frac{247}{512} a^{5} + \frac{24463}{315392} a^{4} - \frac{2223}{9856} a^{3} - \frac{5213}{39424} a^{2} + \frac{1107}{4928} a - \frac{7901}{19712}$, $\frac{1}{7569408} a^{19} + \frac{1}{1892352} a^{18} - \frac{2767}{7569408} a^{17} - \frac{1075}{180224} a^{16} - \frac{360529}{7569408} a^{15} - \frac{370637}{946176} a^{14} - \frac{233077}{1081344} a^{13} - \frac{374137}{3784704} a^{12} - \frac{10485}{229376} a^{11} - \frac{101891}{1892352} a^{10} - \frac{15319}{98304} a^{9} - \frac{1278527}{3784704} a^{8} - \frac{54179}{473088} a^{7} - \frac{14389}{45056} a^{6} - \frac{2174657}{7569408} a^{5} + \frac{871985}{3784704} a^{4} - \frac{190469}{946176} a^{3} - \frac{40525}{157696} a^{2} - \frac{33895}{157696} a + \frac{25199}{78848}$, $\frac{1}{60555264} a^{20} + \frac{1}{30277632} a^{19} - \frac{29}{20185088} a^{18} + \frac{305}{946176} a^{17} - \frac{20245}{60555264} a^{16} + \frac{1001501}{30277632} a^{15} - \frac{2055049}{5505024} a^{14} + \frac{2307551}{5046272} a^{13} - \frac{20716337}{60555264} a^{12} - \frac{4481137}{30277632} a^{11} - \frac{22957075}{60555264} a^{10} - \frac{1177303}{2523136} a^{9} + \frac{1947249}{5046272} a^{8} + \frac{313715}{7569408} a^{7} - \frac{7683377}{60555264} a^{6} + \frac{3829625}{15138816} a^{5} - \frac{132911}{720896} a^{4} + \frac{27769}{270336} a^{3} - \frac{553613}{1261568} a^{2} - \frac{7555}{45056} a - \frac{99791}{315392}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 143659732725000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3919104 |
| The 288 conjugacy class representatives for t21n131 are not computed |
| Character table for t21n131 is not computed |
Intermediate fields
| 7.7.4103684801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.29 | $x^{14} + 2 x^{13} - x^{12} + 2 x^{7} + 2 x^{5} + 2 x^{3} + 2 x - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.6.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 18$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| 3.6.6.1 | $x^{6} + 3 x^{5} - 2$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| 1601 | Data not computed | ||||||