Normalized defining polynomial
\( x^{21} - 27 x^{19} - 18 x^{18} + 216 x^{17} + 288 x^{16} - 66 x^{15} - 324 x^{14} - 3861 x^{13} - 9768 x^{12} - 4617 x^{11} + 12690 x^{10} + 37269 x^{9} + 76356 x^{8} + 100539 x^{7} + 60774 x^{6} - 15876 x^{5} - 55944 x^{4} - 44016 x^{3} - 18144 x^{2} - 4032 x - 384 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1026340717997546749443792043684557504276540162048=-\,2^{39}\cdot 3^{41}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $193.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{15} - \frac{3}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{3}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{1}{64} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} + \frac{7}{32} a^{10} - \frac{1}{8} a^{9} - \frac{21}{64} a^{8} + \frac{7}{32} a^{7} - \frac{5}{64} a^{6} + \frac{1}{8} a^{5} + \frac{29}{64} a^{4} - \frac{9}{32} a^{3} + \frac{31}{64} a^{2} - \frac{7}{16} a - \frac{1}{16}$, $\frac{1}{512} a^{17} - \frac{3}{512} a^{15} + \frac{23}{256} a^{14} - \frac{3}{8} a^{13} - \frac{13}{32} a^{12} - \frac{41}{256} a^{11} - \frac{9}{128} a^{10} - \frac{197}{512} a^{9} + \frac{31}{64} a^{8} + \frac{31}{512} a^{7} - \frac{23}{256} a^{6} + \frac{13}{512} a^{5} + \frac{45}{128} a^{4} + \frac{67}{512} a^{3} - \frac{13}{256} a^{2} - \frac{51}{128} a - \frac{31}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} - \frac{3}{4096} a^{16} - \frac{19}{1024} a^{15} + \frac{89}{1024} a^{14} - \frac{117}{256} a^{13} + \frac{167}{2048} a^{12} - \frac{15}{32} a^{11} - \frac{1661}{4096} a^{10} + \frac{193}{2048} a^{9} - \frac{721}{4096} a^{8} + \frac{69}{1024} a^{7} + \frac{745}{4096} a^{6} - \frac{307}{2048} a^{5} - \frac{549}{4096} a^{4} - \frac{33}{128} a^{3} - \frac{227}{512} a^{2} + \frac{37}{128} a - \frac{1}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{1}{32768} a^{17} - \frac{35}{16384} a^{16} + \frac{127}{8192} a^{15} - \frac{323}{4096} a^{14} + \frac{8183}{16384} a^{13} + \frac{377}{8192} a^{12} - \frac{10109}{32768} a^{11} + \frac{3999}{8192} a^{10} + \frac{6699}{32768} a^{9} + \frac{7003}{16384} a^{8} - \frac{3903}{32768} a^{7} - \frac{263}{4096} a^{6} - \frac{3417}{32768} a^{5} - \frac{8171}{16384} a^{4} + \frac{1061}{4096} a^{3} + \frac{557}{2048} a^{2} - \frac{661}{2048} a + \frac{1}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} - \frac{23}{262144} a^{18} - \frac{1}{4096} a^{17} + \frac{11}{32768} a^{16} + \frac{29}{16384} a^{15} + \frac{431}{131072} a^{14} + \frac{175}{32768} a^{13} - \frac{1061}{262144} a^{12} - \frac{5945}{131072} a^{11} - \frac{28397}{262144} a^{10} - \frac{5513}{32768} a^{9} - \frac{50939}{262144} a^{8} - \frac{12761}{131072} a^{7} + \frac{49495}{262144} a^{6} - \frac{25595}{65536} a^{5} + \frac{10377}{65536} a^{4} + \frac{423}{4096} a^{3} + \frac{633}{16384} a^{2} + \frac{33}{4096} a + \frac{3}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 384598316425000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.138584369664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.12.30.63 | $x^{12} - 10 x^{10} + 11 x^{8} - 12 x^{6} - 13 x^{4} - 2 x^{2} + 1$ | $4$ | $3$ | $30$ | 12T87 | $[2, 2, 2, 3, 7/2, 7/2]^{3}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |