Normalized defining polynomial
\( x^{21} - 27 x^{19} - 18 x^{18} + 171 x^{17} + 228 x^{16} + 589 x^{15} + 1026 x^{14} - 5067 x^{13} - 15184 x^{12} - 15093 x^{11} - 6006 x^{10} + 26188 x^{9} + 105696 x^{8} + 177387 x^{7} + 165758 x^{6} + 98172 x^{5} + 43416 x^{4} + 17424 x^{3} + 6048 x^{2} + 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(83737838586499625317207823358068174759018496=2^{14}\cdot 3^{31}\cdot 587^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 587$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{72} a^{15} - \frac{1}{6} a^{14} + \frac{1}{8} a^{13} + \frac{1}{36} a^{12} - \frac{1}{8} a^{11} - \frac{1}{3} a^{10} - \frac{23}{72} a^{9} + \frac{1}{12} a^{8} + \frac{11}{24} a^{7} - \frac{7}{18} a^{6} - \frac{1}{8} a^{5} + \frac{1}{12} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{24} a - \frac{11}{36}$, $\frac{1}{576} a^{16} + \frac{1}{288} a^{15} - \frac{7}{64} a^{14} - \frac{1}{36} a^{13} - \frac{77}{576} a^{12} + \frac{47}{96} a^{11} - \frac{71}{576} a^{10} + \frac{29}{144} a^{9} - \frac{73}{192} a^{8} - \frac{107}{288} a^{7} + \frac{7}{576} a^{6} - \frac{11}{24} a^{5} + \frac{61}{144} a^{4} + \frac{31}{72} a^{3} + \frac{25}{192} a^{2} - \frac{67}{144} a + \frac{43}{144}$, $\frac{1}{4608} a^{17} - \frac{1}{1536} a^{15} - \frac{41}{2304} a^{14} + \frac{49}{1536} a^{13} - \frac{1}{384} a^{12} + \frac{517}{4608} a^{11} - \frac{103}{256} a^{10} - \frac{65}{1536} a^{9} - \frac{53}{144} a^{8} - \frac{239}{1536} a^{7} - \frac{19}{256} a^{6} - \frac{95}{1152} a^{5} - \frac{7}{32} a^{4} + \frac{67}{512} a^{3} - \frac{17}{2304} a^{2} + \frac{187}{384} a + \frac{71}{192}$, $\frac{1}{36864} a^{18} - \frac{1}{18432} a^{17} - \frac{1}{12288} a^{16} - \frac{19}{9216} a^{15} + \frac{311}{36864} a^{14} - \frac{307}{6144} a^{13} - \frac{4067}{36864} a^{12} + \frac{215}{4608} a^{11} + \frac{1171}{12288} a^{10} + \frac{1651}{18432} a^{9} + \frac{7283}{36864} a^{8} - \frac{1189}{3072} a^{7} - \frac{1133}{2304} a^{6} + \frac{1697}{4608} a^{5} + \frac{803}{4096} a^{4} - \frac{1307}{4608} a^{3} + \frac{1441}{4608} a^{2} - \frac{63}{128} a + \frac{313}{768}$, $\frac{1}{294912} a^{19} - \frac{1}{73728} a^{18} + \frac{1}{294912} a^{17} - \frac{35}{147456} a^{16} + \frac{463}{294912} a^{15} - \frac{77}{9216} a^{14} + \frac{48769}{294912} a^{13} - \frac{13505}{147456} a^{12} + \frac{73}{294912} a^{11} - \frac{19363}{73728} a^{10} + \frac{679}{294912} a^{9} + \frac{22447}{147456} a^{8} - \frac{1771}{36864} a^{7} + \frac{1621}{36864} a^{6} + \frac{53803}{294912} a^{5} - \frac{12455}{147456} a^{4} - \frac{5161}{36864} a^{3} + \frac{6641}{18432} a^{2} - \frac{1747}{6144} a + \frac{455}{3072}$, $\frac{1}{2359296} a^{20} + \frac{1}{1179648} a^{19} - \frac{23}{2359296} a^{18} - \frac{1}{36864} a^{17} + \frac{43}{2359296} a^{16} + \frac{157}{1179648} a^{15} - \frac{260927}{2359296} a^{14} + \frac{66401}{589824} a^{13} - \frac{260291}{2359296} a^{12} + \frac{256405}{1179648} a^{11} + \frac{1010527}{2359296} a^{10} - \frac{141335}{294912} a^{9} - \frac{231113}{589824} a^{8} - \frac{119597}{294912} a^{7} + \frac{623131}{2359296} a^{6} + \frac{221933}{589824} a^{5} - \frac{121415}{589824} a^{4} - \frac{4421}{73728} a^{3} + \frac{1797}{16384} a^{2} - \frac{5465}{12288} a + \frac{5461}{12288}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1150144579010000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 171 conjugacy class representatives for t21n122 are not computed |
| Character table for t21n122 is not computed |
Intermediate fields
| 7.7.5461074081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.32 | $x^{14} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} - 2 x^{7} + 4 x^{6} - 2 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.10.9 | $x^{6} + 6 x^{5} + 21$ | $6$ | $1$ | $10$ | $C_3^2:D_4$ | $[9/4, 9/4]_{4}^{2}$ | |
| 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ | |
| 3.6.9.12 | $x^{6} + 3 x^{4} + 3$ | $6$ | $1$ | $9$ | $D_{6}$ | $[2]_{2}^{2}$ | |
| 587 | Data not computed | ||||||