Normalized defining polynomial
\( x^{21} - 30 x^{19} - 20 x^{18} - 621 x^{17} - 828 x^{16} + 17247 x^{15} + 35046 x^{14} + 66051 x^{13} + 119024 x^{12} - 1844262 x^{11} - 6476388 x^{10} - 4483504 x^{9} + 11041056 x^{8} + 23943879 x^{7} + 14457846 x^{6} - 7997076 x^{5} - 19421064 x^{4} - 14795696 x^{3} - 6066144 x^{2} - 1348032 x - 128384 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79356206645831716224655747338287777368449179467776=2^{14}\cdot 3^{28}\cdot 17^{2}\cdot 29^{18}\cdot 59^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $237.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 29, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} - \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} - \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} - \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} + \frac{1}{81} a^{9} - \frac{1}{27} a^{6} - \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} + \frac{1}{81} a^{10} - \frac{1}{27} a^{7} - \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{81} a^{14} + \frac{1}{81} a^{11} - \frac{1}{27} a^{8} - \frac{5}{81} a^{5} - \frac{2}{81} a^{2}$, $\frac{1}{1944} a^{15} - \frac{1}{162} a^{14} + \frac{1}{324} a^{13} - \frac{1}{486} a^{12} - \frac{7}{648} a^{11} + \frac{1}{81} a^{10} + \frac{19}{1944} a^{9} + \frac{5}{108} a^{8} + \frac{7}{216} a^{7} - \frac{11}{486} a^{6} - \frac{35}{324} a^{5} - \frac{7}{162} a^{4} + \frac{40}{243} a^{3} - \frac{23}{81} a^{2} - \frac{43}{648} a + \frac{437}{972}$, $\frac{1}{15552} a^{16} + \frac{1}{7776} a^{15} - \frac{11}{2592} a^{14} - \frac{11}{1944} a^{13} + \frac{67}{15552} a^{12} + \frac{7}{2592} a^{11} - \frac{101}{15552} a^{10} - \frac{1}{3888} a^{9} + \frac{91}{1728} a^{8} - \frac{301}{7776} a^{7} + \frac{127}{7776} a^{6} - \frac{83}{648} a^{5} - \frac{7}{243} a^{4} + \frac{40}{243} a^{3} - \frac{2035}{5184} a^{2} - \frac{815}{3888} a - \frac{1081}{3888}$, $\frac{1}{124416} a^{17} - \frac{1}{20736} a^{15} + \frac{107}{31104} a^{14} - \frac{239}{41472} a^{13} + \frac{17}{3456} a^{12} - \frac{1529}{124416} a^{11} + \frac{161}{20736} a^{10} + \frac{617}{41472} a^{9} + \frac{41}{972} a^{8} - \frac{239}{6912} a^{7} + \frac{469}{10368} a^{6} - \frac{1087}{7776} a^{5} - \frac{101}{648} a^{4} - \frac{137}{1536} a^{3} - \frac{10597}{62208} a^{2} + \frac{1495}{10368} a - \frac{1901}{5184}$, $\frac{1}{50761728} a^{18} + \frac{1}{497664} a^{17} + \frac{5}{165888} a^{16} - \frac{13}{124416} a^{15} + \frac{22505}{16920576} a^{14} + \frac{10307}{2820096} a^{13} + \frac{24053}{16920576} a^{12} - \frac{10397}{1057536} a^{11} - \frac{5401}{5640192} a^{10} + \frac{281089}{25380864} a^{9} - \frac{384589}{8460288} a^{8} - \frac{11051}{705024} a^{7} - \frac{46331}{2115072} a^{6} - \frac{2105}{528768} a^{5} - \frac{861521}{5640192} a^{4} + \frac{7301}{264384} a^{3} + \frac{37633}{124416} a^{2} - \frac{881}{5184} a + \frac{34475}{186624}$, $\frac{1}{406093824} a^{19} - \frac{1}{101523456} a^{18} + \frac{5}{3981312} a^{17} - \frac{53}{1990656} a^{16} + \frac{16249}{135364608} a^{15} + \frac{27779}{16920576} a^{14} + \frac{737729}{135364608} a^{13} - \frac{37153}{67682304} a^{12} + \frac{1868309}{135364608} a^{11} + \frac{150827}{101523456} a^{10} - \frac{2250481}{203046912} a^{9} - \frac{115729}{33841152} a^{8} + \frac{211231}{16920576} a^{7} + \frac{298453}{8460288} a^{6} - \frac{4374707}{135364608} a^{5} + \frac{8535535}{67682304} a^{4} + \frac{792233}{16920576} a^{3} - \frac{115385}{497664} a^{2} - \frac{270877}{1492992} a - \frac{340183}{746496}$, $\frac{1}{3248750592} a^{20} + \frac{1}{1624375296} a^{19} - \frac{13}{1624375296} a^{18} - \frac{19}{7962624} a^{17} + \frac{1337}{120324096} a^{16} + \frac{3191}{541458432} a^{15} + \frac{373825}{63700992} a^{14} - \frac{1035247}{270729216} a^{13} + \frac{1127299}{360972288} a^{12} + \frac{19719955}{1624375296} a^{11} + \frac{17591315}{1624375296} a^{10} + \frac{2844541}{406093824} a^{9} - \frac{931109}{33841152} a^{8} - \frac{16781}{11280384} a^{7} - \frac{19984595}{1082916864} a^{6} - \frac{4604437}{270729216} a^{5} - \frac{1982305}{270729216} a^{4} - \frac{168911}{3760128} a^{3} - \frac{3625375}{11943936} a^{2} + \frac{1011241}{2985984} a - \frac{419461}{2985984}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 292713654111000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 979776 |
| The 177 conjugacy class representatives for t21n120 are not computed |
| Character table for t21n120 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | R | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | R | $21$ | $21$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{7}$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.23 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T6 | $[2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 59 | Data not computed | ||||||