Normalized defining polynomial
\( x^{21} - 6 x^{19} - 4 x^{18} - 126 x^{17} - 168 x^{16} + 322 x^{15} + 756 x^{14} + 4554 x^{13} + 10912 x^{12} + 5454 x^{11} - 13020 x^{10} - 60139 x^{9} - 164556 x^{8} - 259701 x^{7} - 251642 x^{6} - 171396 x^{5} - 97416 x^{4} - 48624 x^{3} - 18144 x^{2} - 4032 x - 384 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6782764925506469650693833692003522155480498176=2^{14}\cdot 3^{35}\cdot 587^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 587$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8}$, $\frac{1}{72} a^{15} - \frac{1}{6} a^{14} + \frac{1}{12} a^{13} - \frac{1}{6} a^{12} - \frac{1}{12} a^{11} - \frac{1}{3} a^{10} - \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{5}{12} a^{7} - \frac{1}{9} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{24} a^{3} - \frac{1}{8} a - \frac{1}{12}$, $\frac{1}{576} a^{16} + \frac{1}{288} a^{15} - \frac{7}{96} a^{14} - \frac{1}{24} a^{13} - \frac{13}{96} a^{12} - \frac{19}{48} a^{11} - \frac{41}{96} a^{10} - \frac{5}{24} a^{9} - \frac{25}{96} a^{8} - \frac{59}{144} a^{7} - \frac{125}{288} a^{6} - \frac{1}{4} a^{5} - \frac{73}{192} a^{4} + \frac{5}{96} a^{3} - \frac{25}{64} a^{2} + \frac{19}{48} a + \frac{5}{48}$, $\frac{1}{4608} a^{17} + \frac{1}{256} a^{15} + \frac{37}{384} a^{14} + \frac{59}{768} a^{13} + \frac{5}{192} a^{12} - \frac{221}{768} a^{11} + \frac{191}{384} a^{10} + \frac{79}{768} a^{9} - \frac{1}{36} a^{8} + \frac{5}{768} a^{7} - \frac{77}{384} a^{6} + \frac{407}{1536} a^{5} - \frac{35}{128} a^{4} + \frac{75}{512} a^{3} + \frac{17}{768} a^{2} - \frac{59}{128} a - \frac{7}{64}$, $\frac{1}{36864} a^{18} - \frac{1}{18432} a^{17} + \frac{1}{2048} a^{16} - \frac{13}{4608} a^{15} - \frac{601}{6144} a^{14} - \frac{305}{3072} a^{13} - \frac{773}{6144} a^{12} - \frac{25}{768} a^{11} - \frac{1709}{6144} a^{10} - \frac{4109}{9216} a^{9} - \frac{1393}{18432} a^{8} - \frac{169}{1536} a^{7} + \frac{16381}{36864} a^{6} + \frac{919}{6144} a^{5} - \frac{157}{4096} a^{4} + \frac{17}{128} a^{3} + \frac{95}{1536} a^{2} + \frac{61}{128} a + \frac{85}{768}$, $\frac{1}{294912} a^{19} - \frac{1}{73728} a^{18} + \frac{11}{147456} a^{17} - \frac{35}{73728} a^{16} + \frac{349}{147456} a^{15} + \frac{293}{3072} a^{14} + \frac{4543}{49152} a^{13} + \frac{907}{8192} a^{12} + \frac{739}{49152} a^{11} + \frac{11261}{36864} a^{10} - \frac{52541}{147456} a^{9} - \frac{21125}{73728} a^{8} - \frac{98387}{294912} a^{7} - \frac{6055}{18432} a^{6} + \frac{20429}{98304} a^{5} + \frac{2477}{16384} a^{4} + \frac{1261}{4096} a^{3} - \frac{497}{6144} a^{2} - \frac{2951}{6144} a - \frac{341}{3072}$, $\frac{1}{2359296} a^{20} + \frac{1}{1179648} a^{19} - \frac{1}{1179648} a^{18} - \frac{1}{294912} a^{17} - \frac{71}{1179648} a^{16} - \frac{113}{589824} a^{15} - \frac{97}{393216} a^{14} - \frac{17}{98304} a^{13} + \frac{623}{393216} a^{12} + \frac{4597}{589824} a^{11} + \frac{21115}{1179648} a^{10} + \frac{4465}{147456} a^{9} + \frac{82741}{2359296} a^{8} + \frac{463}{1179648} a^{7} - \frac{257849}{2359296} a^{6} - \frac{21315}{65536} a^{5} + \frac{18145}{65536} a^{4} - \frac{1997}{4096} a^{3} + \frac{211}{49152} a^{2} + \frac{11}{12288} a + \frac{1}{12288}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9751020542440000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 171 conjugacy class representatives for t21n122 are not computed |
| Character table for t21n122 is not computed |
Intermediate fields
| 7.7.5461074081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.20 | $x^{14} + 4 x^{13} - x^{12} - 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 4 x^{4} - 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.6.11.13 | $x^{6} + 6 x^{3} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| 3.6.10.9 | $x^{6} + 6 x^{5} + 21$ | $6$ | $1$ | $10$ | $C_3^2:D_4$ | $[9/4, 9/4]_{4}^{2}$ | |
| 3.6.10.9 | $x^{6} + 6 x^{5} + 21$ | $6$ | $1$ | $10$ | $C_3^2:D_4$ | $[9/4, 9/4]_{4}^{2}$ | |
| 587 | Data not computed | ||||||