Normalized defining polynomial
\( x^{21} - 249 x^{19} - 843 x^{18} + 19044 x^{17} + 111540 x^{16} - 551311 x^{15} - 5647464 x^{14} - 45546 x^{13} + 132475694 x^{12} + 358072866 x^{11} - 1167748197 x^{10} - 7756542147 x^{9} - 6814752012 x^{8} + 53685647295 x^{7} + 182177160840 x^{6} + 109117846314 x^{5} - 635372288682 x^{4} - 1892653223649 x^{3} - 2478821134482 x^{2} - 1674921908142 x - 476552642419 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60632748989979361654722270464974453409458499443094025=3^{28}\cdot 5^{2}\cdot 7^{2}\cdot 109^{2}\cdot 211^{2}\cdot 577^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $326.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 109, 211, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{329} a^{17} - \frac{18}{47} a^{16} + \frac{12}{329} a^{15} + \frac{78}{329} a^{14} + \frac{13}{47} a^{13} + \frac{45}{329} a^{12} - \frac{106}{329} a^{11} + \frac{86}{329} a^{10} + \frac{146}{329} a^{9} + \frac{43}{329} a^{8} - \frac{102}{329} a^{7} - \frac{30}{329} a^{6} + \frac{146}{329} a^{5} + \frac{80}{329} a^{4} + \frac{130}{329} a^{3} + \frac{138}{329} a^{2} - \frac{1}{47} a - \frac{16}{47}$, $\frac{1}{329} a^{18} - \frac{72}{329} a^{16} - \frac{55}{329} a^{15} + \frac{7}{47} a^{14} - \frac{4}{329} a^{13} - \frac{29}{329} a^{12} - \frac{110}{329} a^{11} + \frac{125}{329} a^{10} + \frac{15}{329} a^{9} + \frac{52}{329} a^{8} - \frac{51}{329} a^{7} - \frac{15}{329} a^{6} + \frac{52}{329} a^{5} + \frac{11}{329} a^{4} + \frac{68}{329} a^{3} - \frac{8}{47} a^{2} - \frac{1}{47} a + \frac{5}{47}$, $\frac{1}{329} a^{19} + \frac{85}{329} a^{16} - \frac{74}{329} a^{15} + \frac{19}{329} a^{14} - \frac{57}{329} a^{13} - \frac{160}{329} a^{12} + \frac{60}{329} a^{11} - \frac{44}{329} a^{10} + \frac{36}{329} a^{9} + \frac{12}{47} a^{8} - \frac{121}{329} a^{7} - \frac{134}{329} a^{6} - \frac{5}{329} a^{5} - \frac{2}{7} a^{4} + \frac{92}{329} a^{3} + \frac{59}{329} a^{2} - \frac{20}{47} a + \frac{23}{47}$, $\frac{1}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{20} + \frac{253792815478620261302558084880399312294958615940640867138887201130981552676439704}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{19} + \frac{409460033986976408224501558104340945577675308642486766387883173106465037016336634}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{18} - \frac{149835086514619995835280213393335547304414541755571627860918998520913335166216881}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{17} - \frac{6665855127704906430134969362792631497940226578805021643844657295780483235188783921}{43848795167087173959432585106122629978484872795551357373123681237597919228758146861} a^{16} + \frac{69327003985784833741676332520400196045342382786791159657455178137640309699513229066}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{15} + \frac{681557595553131973098661731842894039016659120815452755062681515764004354104494682}{6530671620630004632255916930699115103178598075933180885358846141769902863857596341} a^{14} + \frac{138725417289469388496277523854075591238386251475953403228987460911962341351151335267}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{13} - \frac{18801396491241201975047688549218676651575927999738303403262948026254154110206417076}{43848795167087173959432585106122629978484872795551357373123681237597919228758146861} a^{12} - \frac{66236840628527332227129931740609922131686805660868489671910449191013249279173453053}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{11} - \frac{2255238486975841908392475446164805883982030309359273760651271182420240192576936408}{43848795167087173959432585106122629978484872795551357373123681237597919228758146861} a^{10} + \frac{39826860789950760062739830979963621676642972327447335343410786867551444562150999401}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{9} - \frac{117984238127515584996291686761203964335942972098723745117176729481695894387223895983}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{8} - \frac{117064271148284576350167772336064042572040388540057608334403357538103756904344011760}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{7} - \frac{129186453096410705846968626860800674714866440833943058472694563574566008932568516528}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{6} + \frac{79526040465568181134669459177708744105815456639790099109983071342245432954140756853}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{5} + \frac{50633009196150308262152104827040658420804085885822598663965101514206880545861661545}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{4} + \frac{10972985922685247024583569990989829827280409210280188738878627741968064816086126977}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{3} - \frac{2886363740864698886443800176533315397113636569719776093146362833008040491257277073}{306941566169610217716028095742858409849394109568859501611865768663185434601307028027} a^{2} + \frac{2165470505385975282248200437930994503847494439172860227241712300885849706110201402}{43848795167087173959432585106122629978484872795551357373123681237597919228758146861} a - \frac{20875950573236327984889345927657984748052929129128672035240755453509588879986858376}{43848795167087173959432585106122629978484872795551357373123681237597919228758146861}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2906659142660000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 168 conjugacy class representatives for t21n124 are not computed |
| Character table for t21n124 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | R | R | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $109$ | 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.3.2.2 | $x^{3} + 654$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 211 | Data not computed | ||||||
| 577 | Data not computed | ||||||