Normalized defining polynomial
\( x^{21} - 2 x^{20} - 93 x^{19} + 88 x^{18} + 3721 x^{17} + 350 x^{16} - 81021 x^{15} - 88156 x^{14} + 984243 x^{13} + 2075330 x^{12} - 5742475 x^{11} - 20782888 x^{10} + 3406747 x^{9} + 80527854 x^{8} + 76501041 x^{7} + 4880628 x^{6} + 263486072 x^{5} + 364895104 x^{4} - 1832575168 x^{3} - 6197506840 x^{2} - 7704141648 x - 3834068732 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58634532900721383497322221089771532067330372665344=2^{22}\cdot 73^{12}\cdot 79^{2}\cdot 2617^{2}\cdot 119503^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $234.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 73, 79, 2617, 119503$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{15} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4220} a^{18} + \frac{108}{1055} a^{17} + \frac{1}{10} a^{16} + \frac{951}{4220} a^{15} - \frac{167}{2110} a^{14} + \frac{419}{2110} a^{13} + \frac{51}{1055} a^{12} + \frac{58}{1055} a^{11} - \frac{943}{4220} a^{10} + \frac{94}{1055} a^{9} - \frac{18}{211} a^{8} - \frac{1959}{4220} a^{7} + \frac{461}{2110} a^{6} - \frac{883}{2110} a^{5} - \frac{497}{1055} a^{4} - \frac{491}{1055} a^{3} - \frac{474}{1055} a^{2} - \frac{144}{1055} a + \frac{288}{1055}$, $\frac{1}{4220} a^{19} - \frac{261}{2110} a^{17} + \frac{107}{4220} a^{16} + \frac{71}{1055} a^{15} - \frac{116}{1055} a^{14} - \frac{501}{2110} a^{13} + \frac{181}{1055} a^{12} + \frac{113}{4220} a^{11} - \frac{397}{1055} a^{10} + \frac{447}{1055} a^{9} + \frac{1641}{4220} a^{8} + \frac{55}{211} a^{7} - \frac{64}{211} a^{6} - \frac{393}{2110} a^{5} + \frac{48}{1055} a^{4} - \frac{417}{1055} a^{3} - \frac{46}{1055} a^{2} + \frac{251}{1055} a + \frac{74}{1055}$, $\frac{1}{39484332591402985959132290006534395054231975587485721460} a^{20} + \frac{2191837473996886676324161955616253325095990911940519}{19742166295701492979566145003267197527115987793742860730} a^{19} - \frac{722064029689519207076560121541694239750969581076057}{9871083147850746489783072501633598763557993896871430365} a^{18} - \frac{3316656632570904838141203676583667838567615430683166671}{39484332591402985959132290006534395054231975587485721460} a^{17} + \frac{1407562663719177971653895711354244537873624051554252163}{39484332591402985959132290006534395054231975587485721460} a^{16} + \frac{336471634618549865824038530894052458861099705458237907}{39484332591402985959132290006534395054231975587485721460} a^{15} - \frac{318782116492405015429872200461460769926309453601990916}{1974216629570149297956614500326719752711598779374286073} a^{14} - \frac{459513014724386268173750044675307858582612833665975903}{3948433259140298595913229000653439505423197558748572146} a^{13} + \frac{8763808712290556482458979484581593331798718447848853721}{39484332591402985959132290006534395054231975587485721460} a^{12} + \frac{2907716171332785096298582064154524160950609100666990787}{19742166295701492979566145003267197527115987793742860730} a^{11} + \frac{5127939696653766608161326269327092233149087844050265711}{19742166295701492979566145003267197527115987793742860730} a^{10} - \frac{11102636986349121284874916569139119274324542558486224651}{39484332591402985959132290006534395054231975587485721460} a^{9} + \frac{17762279155755287576115723860615288046587615808041965943}{39484332591402985959132290006534395054231975587485721460} a^{8} - \frac{7705397433110881527104863788649951489943320735599999261}{39484332591402985959132290006534395054231975587485721460} a^{7} + \frac{2772256185251294802638853552995344166042861467400194208}{9871083147850746489783072501633598763557993896871430365} a^{6} + \frac{721808255168204358563317620951084886860657179319872273}{3948433259140298595913229000653439505423197558748572146} a^{5} - \frac{6449732977132996713149428867501876157420232603875922677}{19742166295701492979566145003267197527115987793742860730} a^{4} - \frac{1488547874850594060535898759655793078023533818359204551}{9871083147850746489783072501633598763557993896871430365} a^{3} + \frac{4539244985013146679370508884059388757402879686225103362}{9871083147850746489783072501633598763557993896871430365} a^{2} + \frac{1566152620833437482078928877048017938464980786091047656}{9871083147850746489783072501633598763557993896871430365} a - \frac{2108804870283196020895135506173609697350570372149075911}{9871083147850746489783072501633598763557993896871430365}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 347378823527000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2939328 |
| The 99 conjugacy class representatives for t21n127 are not computed |
| Character table for t21n127 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | $21$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.16.4 | $x^{14} + 2 x^{13} + 2 x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 2$ | $14$ | $1$ | $16$ | 14T11 | $[10/7, 10/7, 10/7]_{7}^{3}$ | |
| 73 | Data not computed | ||||||
| 79 | Data not computed | ||||||
| 2617 | Data not computed | ||||||
| 119503 | Data not computed | ||||||