Normalized defining polynomial
\( x^{21} - 9 x^{20} - 97 x^{19} + 833 x^{18} + 4984 x^{17} - 31715 x^{16} - 175533 x^{15} + 562585 x^{14} + 4094879 x^{13} - 1859808 x^{12} - 53998064 x^{11} - 94535203 x^{10} + 237316339 x^{9} + 1298499408 x^{8} + 2093062163 x^{7} - 1378228052 x^{6} - 15222593937 x^{5} - 40842190694 x^{4} - 67054672118 x^{3} - 73764878089 x^{2} - 50695704981 x - 16324734619 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5805853122246764931899778242573785764324687217345781=29^{19}\cdot 126151^{2}\cdot 7731457^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $291.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 126151, 7731457$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17} a^{15} - \frac{3}{17} a^{14} - \frac{7}{17} a^{12} + \frac{2}{17} a^{11} + \frac{5}{17} a^{10} - \frac{8}{17} a^{9} - \frac{7}{17} a^{8} + \frac{4}{17} a^{7} + \frac{4}{17} a^{6} - \frac{6}{17} a^{5} + \frac{2}{17} a^{4} - \frac{7}{17} a^{3} - \frac{1}{17} a^{2} + \frac{4}{17} a$, $\frac{1}{17} a^{16} + \frac{8}{17} a^{14} - \frac{7}{17} a^{13} - \frac{2}{17} a^{12} - \frac{6}{17} a^{11} + \frac{7}{17} a^{10} + \frac{3}{17} a^{9} - \frac{1}{17} a^{7} + \frac{6}{17} a^{6} + \frac{1}{17} a^{5} - \frac{1}{17} a^{4} - \frac{5}{17} a^{3} + \frac{1}{17} a^{2} - \frac{5}{17} a$, $\frac{1}{17} a^{17} - \frac{2}{17} a^{13} - \frac{1}{17} a^{12} + \frac{8}{17} a^{11} - \frac{3}{17} a^{10} - \frac{4}{17} a^{9} + \frac{4}{17} a^{8} + \frac{8}{17} a^{7} + \frac{3}{17} a^{6} - \frac{4}{17} a^{5} - \frac{4}{17} a^{4} + \frac{6}{17} a^{3} + \frac{3}{17} a^{2} + \frac{2}{17} a$, $\frac{1}{17} a^{18} - \frac{2}{17} a^{14} - \frac{1}{17} a^{13} + \frac{8}{17} a^{12} - \frac{3}{17} a^{11} - \frac{4}{17} a^{10} + \frac{4}{17} a^{9} + \frac{8}{17} a^{8} + \frac{3}{17} a^{7} - \frac{4}{17} a^{6} - \frac{4}{17} a^{5} + \frac{6}{17} a^{4} + \frac{3}{17} a^{3} + \frac{2}{17} a^{2}$, $\frac{1}{17} a^{19} - \frac{7}{17} a^{14} + \frac{8}{17} a^{13} - \frac{3}{17} a^{10} - \frac{8}{17} a^{9} + \frac{6}{17} a^{8} + \frac{4}{17} a^{7} + \frac{4}{17} a^{6} - \frac{6}{17} a^{5} + \frac{7}{17} a^{4} + \frac{5}{17} a^{3} - \frac{2}{17} a^{2} + \frac{8}{17} a$, $\frac{1}{2095336124264653863273920651253356278730115406889} a^{20} + \frac{19259154524554243239862732063117490266487692974}{2095336124264653863273920651253356278730115406889} a^{19} + \frac{61488257366088141688883056873119466007242939057}{2095336124264653863273920651253356278730115406889} a^{18} - \frac{50161654294211772542283852878919477130365712822}{2095336124264653863273920651253356278730115406889} a^{17} - \frac{6387381930666233210508923741701284155765109515}{2095336124264653863273920651253356278730115406889} a^{16} + \frac{3578450554535064449703235513679013110710327164}{2095336124264653863273920651253356278730115406889} a^{15} + \frac{914558333380753264813847023302194383746224137443}{2095336124264653863273920651253356278730115406889} a^{14} + \frac{59436827841465972643050851470396606322680926892}{123255066133214933133760038309020957572359729817} a^{13} - \frac{910086683046247164607639125768764011610845715158}{2095336124264653863273920651253356278730115406889} a^{12} - \frac{89930975032867538611376694449248137118200992111}{2095336124264653863273920651253356278730115406889} a^{11} + \frac{697560812716811144145270223495054647303586390658}{2095336124264653863273920651253356278730115406889} a^{10} - \frac{65510660598090381035779246658855058601673336874}{2095336124264653863273920651253356278730115406889} a^{9} - \frac{706418689946945353526449249183125331791389401952}{2095336124264653863273920651253356278730115406889} a^{8} + \frac{70943152735453045493335518063891667757603434495}{2095336124264653863273920651253356278730115406889} a^{7} + \frac{408302176590918790045654298054959099222661596101}{2095336124264653863273920651253356278730115406889} a^{6} - \frac{918088312466116741955176691702796339811021160894}{2095336124264653863273920651253356278730115406889} a^{5} - \frac{722441233540473811181926848984212786664603561808}{2095336124264653863273920651253356278730115406889} a^{4} + \frac{26348400897758722299752387285328526076991259456}{123255066133214933133760038309020957572359729817} a^{3} - \frac{912452862913134486776594779490985258714998925159}{2095336124264653863273920651253356278730115406889} a^{2} - \frac{13814194464448804112071314941020600435269239108}{123255066133214933133760038309020957572359729817} a + \frac{1919892779619629744095380553721320540704000271}{7250298007836172537280002253471821033668219401}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1004200753900000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 244944 |
| The 72 conjugacy class representatives for t21n112 are not computed |
| Character table for t21n112 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | $21$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| 126151 | Data not computed | ||||||
| 7731457 | Data not computed | ||||||