Normalized defining polynomial
\( x^{21} - 4 x^{20} - 119 x^{19} + 594 x^{18} + 5185 x^{17} - 34100 x^{16} - 85945 x^{15} + 948642 x^{14} - 328631 x^{13} - 12572436 x^{12} + 28717465 x^{11} + 49351730 x^{10} - 303320137 x^{9} + 413424460 x^{8} + 453601517 x^{7} - 2810189586 x^{6} + 5024882686 x^{5} - 3804363432 x^{4} - 428469094 x^{3} + 3845381132 x^{2} - 4627265616 x + 2209117384 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(548703534888016451766579057903649447556780593774592=2^{37}\cdot 809^{6}\cdot 3391^{2}\cdot 35191729^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $260.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 809, 3391, 35191729$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{32} a^{17} - \frac{1}{32} a^{15} + \frac{1}{16} a^{14} + \frac{1}{16} a^{13} + \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} + \frac{15}{32} a^{9} - \frac{3}{8} a^{8} - \frac{9}{32} a^{7} - \frac{3}{16} a^{6} + \frac{5}{16} a^{5} - \frac{1}{2} a^{4} + \frac{5}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{32} a^{18} - \frac{1}{32} a^{16} + \frac{1}{16} a^{15} + \frac{1}{16} a^{14} + \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{32} a^{10} - \frac{3}{8} a^{9} + \frac{7}{32} a^{8} - \frac{3}{16} a^{7} - \frac{3}{16} a^{6} - \frac{1}{2} a^{5} - \frac{3}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{19} + \frac{1}{32} a^{16} - \frac{7}{64} a^{15} - \frac{1}{32} a^{14} + \frac{7}{32} a^{13} - \frac{1}{16} a^{12} - \frac{5}{64} a^{11} - \frac{1}{16} a^{10} - \frac{5}{32} a^{9} - \frac{1}{32} a^{8} + \frac{25}{64} a^{7} + \frac{1}{32} a^{6} - \frac{7}{16} a^{5} - \frac{1}{16} a^{4} - \frac{11}{32} a^{3} + \frac{1}{16} a^{2} + \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{34447341981333105558884824110212685247946749578524686472712364662952960398976} a^{20} - \frac{150923923660240744018730975967547750839399053671283123609057495309558770667}{34447341981333105558884824110212685247946749578524686472712364662952960398976} a^{19} + \frac{15599529607297607834948249361986909953120946210989360376609357951608269693}{8611835495333276389721206027553171311986687394631171618178091165738240099744} a^{18} + \frac{170999088173433001728212554059500015491940743381768707373598270125869321907}{17223670990666552779442412055106342623973374789262343236356182331476480199488} a^{17} + \frac{2044534507534620590398700092690997358125759251934947340506837339461796356751}{34447341981333105558884824110212685247946749578524686472712364662952960398976} a^{16} + \frac{2502490209491975099316134773939939300854003547735903731040719270102891465263}{34447341981333105558884824110212685247946749578524686472712364662952960398976} a^{15} + \frac{208505633348344880870785208411250527006118695435253435739304413725677737217}{8611835495333276389721206027553171311986687394631171618178091165738240099744} a^{14} - \frac{803085870061249665379943593319881445729764931530285554335661751762737269699}{17223670990666552779442412055106342623973374789262343236356182331476480199488} a^{13} - \frac{2606561871135556449544934667214516705126530678018762630817783410450977669753}{34447341981333105558884824110212685247946749578524686472712364662952960398976} a^{12} + \frac{4800217381303522723113071261537467210001159375427788753506362445219211738147}{34447341981333105558884824110212685247946749578524686472712364662952960398976} a^{11} + \frac{2184674413750165745057910344270350691930902011894645671613307052004198025559}{17223670990666552779442412055106342623973374789262343236356182331476480199488} a^{10} - \frac{784028556171983679317110111470353088195551059618707671008743046697438842941}{4305917747666638194860603013776585655993343697315585809089045582869120049872} a^{9} - \frac{12722400495447949880237095573088433003336335816749053460153243927828178019989}{34447341981333105558884824110212685247946749578524686472712364662952960398976} a^{8} - \frac{17191811424109375203595333531143090817090979288127219433412591187027845707565}{34447341981333105558884824110212685247946749578524686472712364662952960398976} a^{7} + \frac{8350366673261617046440378449833719986066506768538820358885231277716448204279}{17223670990666552779442412055106342623973374789262343236356182331476480199488} a^{6} - \frac{589156614319446363579814781304874337774636759771230203085515505195338589949}{4305917747666638194860603013776585655993343697315585809089045582869120049872} a^{5} + \frac{866646135580996033226205079733327315017864181436131161782879189475272836767}{17223670990666552779442412055106342623973374789262343236356182331476480199488} a^{4} + \frac{8499461399775013118559909899710693249818322557024913068788068714083640784743}{17223670990666552779442412055106342623973374789262343236356182331476480199488} a^{3} + \frac{367987402376247939754443493731565336853780733154994905716297241032983292669}{8611835495333276389721206027553171311986687394631171618178091165738240099744} a^{2} + \frac{1974177097051716148779645083068266783232054577055124837459643731714932821151}{4305917747666638194860603013776585655993343697315585809089045582869120049872} a - \frac{312652199728114038327845861355366723742010928560636512806498564527972641223}{4305917747666638194860603013776585655993343697315585809089045582869120049872}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6486448696850000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 120 conjugacy class representatives for t21n136 are not computed |
| Character table for t21n136 is not computed |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | $21$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 809 | Data not computed | ||||||
| 3391 | Data not computed | ||||||
| 35191729 | Data not computed | ||||||